Experts Question Claim Tunguska Meteorite May Have Come from Mars

Image credit:

In 1908 a blazing white line cut across the sky before exploding a few miles above the ground with a force one thousand times stronger than the nuclear blast that leveled Hiroshima, Japan.

The resulting shock wave felled trees across more than 800 square miles in the remote forests of Tunguska, Siberia.

For over 100 years, the exact origins of the Tunguska event have remained a mystery. Without any fragments or impact craters to study, astronomers have been left in the dark. That’s not to say that all kinds of extraordinary causes haven’t been invoked to explain the event. Various people have thought of everything from Earth colliding with a small black hole to the crash of a UFO.

Russian researchers claim they may finally have evidence that will dislodge all conspiracy theories, but that “may” is huge. A team of four believes they have recovered fragments of the object — the so-called Tunguska meteorite — and even think they are Martian in origin. The research, however, is being called into question.

In a detective-like manner, the team surveyed 100 years’ worth of research. The researchers read eyewitness reports and analyzed aerial photos of the location. They performed a systematic survey of the central region in the felled forest and analyzed exotic rocks and penetration funnels.

A schematic of the Tunguska event. Image Credit:
A schematic of the central region in the felled forest due to the Tunguska event. Image Credit: Anfinogenov et al.

Previously, numerous expeditions failed to recover any fragments that could be attributed conclusively to the long-sought Tunguska meteorite. But then Andrei Zlobin, of the Russian Academy of Sciences’ Vernadsky State Geological Museum, discovered three stones with possible traces of melting. He published the results in April 2013.

Zlobin’s discovery paper was received with skepticism and Universe Today covered the news immediately. A curious question arose quickly: why did it take so long for Zlobin to analyze his samples? The expedition took place in 1988, but it took 20 years before the three Tunguska candidates were nominated and another five years before Zlobin finished the paper.

By Zlobin’s admission, his discovery paper was only a preliminary study. He claimed he didn’t carry out a detailed chemical analysis of the rocks, which is necessary in order to reveal their true nature. Most field experts quickly dismissed the paper, feeling there was more work to be done before Zlobin could truly know if these rocks were fragments from the Tunguska meteor.

Today, new research is moving forward with an analysis of the rocks originally discovered by Zlobin. But an interesting new addition to the collection is a rock called “John’s Stone” — a large boulder discovered in July, 1972. While it’s mostly a dark gray now it was much lighter at the time of its discovery. “John’s Stone has an almond-like shape with one broken side,” lead author Dr. Yana Anfinogenov told Universe Today.

Now the skeptical reader might be asking the same question as before: why is there such a large time-lapse between the discovery of John’s Stone and the analysis presented here? (It’s interesting to note that while this elusive rock has been reviewed in the literature for over 40 years, this is the first time it has appeared in an English paper). Anfinogenov claimed that new data (especially concerning Martian geology) allowed for a much better analysis today than it did in recent years.

Photos (1972) of John's Stone and related findings. Image Credit:
Photos (1972) of John’s Stone and related findings. Image Credit: Anfinovenov et al.

“The ground near John’s Stone presents undeniable impact signs suggesting that the boulder hit the ground with a catastrophic speed,” Anfinogenov told Universe Today. It left a deep trace in the permafrost which allowed researchers to note its trajectory and landing velocity coincides with that of the incoming Tunguska meteorite.

John’s Stone also contains shear-fractured splinter fragments with glossy coatings, indicating the strong effect of heat generated when it entered our atmosphere. The research team attempted to reproduce those glossy coatings found on the splinters by heating another fragment of John’s Stone to 500 degrees Celsius. The experiment was not successful as the fragment disintegrated in high heat.

“The authors do not present a strong case that the boulder known as John’s Stone was involved in the Tunguska event, or that it originated from Mars,” said Dr. Phil Bland, a meteorite expert at Curtin University in Perth, Australia.

They claim the mineral structure and chemical composition of the rocks — a quartz-sandstone with grain sizes of 0.5 to 1.5 cm and rich in silica — match rocks found on Mars. But their paper lacks any microanalysis of the samples, or isotopic study.

While there is a strong case that an impact on Mars could easily eject rock fragments that would then hit the Earth, something doesn’t match up. “The physics of ejecting material from Mars into interplanetary space argues for fragments with diameters of one to two meters, not the 20 to 30 meter range that would be required for Tunguska,” Bland told Universe Today.

It seems as though planetary geologists will require a much stronger case than this to be truly convinced John’s Stone is the Tunguska meteorite, let alone from Mars.

The paper is currently under peer-review but is available for download here.

A Possible Meteor Shower from Comet ISON?

Credit-Stellarium

Hey, remember Comet C/2012 S1 ISON? Who can forget the roller-coaster ride that the touted “Comet of the Century” took us on last year. Well, ISON could have one more trick up its cosmic sleeve –although it’s a big maybe — in the form of a meteor shower or (more likely) a brief uptick in meteor activity this week.

In case you skipped 2012 and 2013, or you’re a time traveler who missed their temporal mark, we’ll fill you in on the story thus far.

Comet ISON was discovered by Artyom Novichonok and Vitali Nevski on September 21st, 2012 as part of the ongoing International Scientific Optical Network (ISON) survey. Shortly after its discovery, researchers knew they had spotted something special: a sungrazing comet already active at over 6.4 Astronomical Units (A.U.s) from the Sun. The Internet then did what it does best, and promptly ran with the story. There were no shortage of Comet ISON conspiracy theories for science writers to combat in 2013. It’s still amusing to this day to see predictions for comet ISON post-perihelion echo through calendars, almanacs and magazines compiled and sent to press before its demise.

ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico
ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico

The frenzy for all things ISON reached a crescendo on U.S. Thanksgiving Day November 28th 2013, as ISON passed just 1.1 million kilometres from the surface of the Sun. Unfortunately, what emerged was a sputtering ember of the comet formerly known as ISON, which faded from view just as it was slated to reenter the dawn sky.

Hey, we were crestfallen as well… we had our semi-secret dark sky site pre-selected for ISON imaging post-perihelion and everything. Despite heroic searches by ground and space-based assets, we’ve yet to see any compelling recoveries of Comet ISON post-perihelion.

This week, however, Comet ISON may put on its last hurrah, in the form of a minor meteor shower. We have to say from the outset that we’re highly skeptical that an “ISON-id meteor outburst” will grace the skies. Known annual showers are fickle enough, and it’s nearly impossible to predict just what might happen during a meteor shower with no past track record.

But you won’t see anything if you don’t try. If anything is set to occur, the night of January 15th into the 16th might just be the time to watch. This is because the Earth will cross the orbital plane of ISON’s path right around 9:00 PM EST/2:00 UT. Last year, ISON passed within 3.3 million kilometres of the Earth’s orbit on its inbound leg. Earlier last year, ISON was estimated to have been generating a prodigious amount of dust, at a rate of about 51,000 kilograms per minute. Any would-be fragments of ISON outbound would’ve passed closest to the Earth at 64 million kilometres distant on the day after Christmas last year. Veteran sky observer Bob King wrote about the prospects for catching ISON one last time during this month back in December 2013.

Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.
A simulation showing Earth crossing the plane of Comet ISON’s orbit early on January 16th. Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.

Another idea out there that is even more unlikely is the proposal that dust from Comet ISON may generate an uptick in noctilucent cloud activity. And already, a brief search of the internet sees local news reports attempting to tie every meteor observed to ISON this week, though no conclusive link to any observed fireball has been made.

The radiant to watch for any possible “ISON-ids” sits near the +3.5 magnitude star Eta Leonis in the sickle of Leo. Robert Lundsford of the American Meteor Society notes in a recent posting that any ISON-related meteors would pass through our atmosphere at a moderate 51 kilometres a second, with a visible duration of less than one second.

Note that meteor activity has another strike against it, as the Moon reaches Full on the same night. In fact, the Full Moon of Wednesday January 15th sits in the constellation Gemini,just 32 degrees away from the suspect radiant!

Another caveat is in order for any remaining dooms-dayers: no substantial fragments of ISON are (or ever were) inbound and headed towards our fair planet. Yes, we’re seeing rumblings to this effect in the pseudoscience netherworlds of ye ole Internet, along with ideas that ISON secretly survived, NASA “hid” ISON, ISON cloaked like a Romulan Bird of Prey, you name it. Just dust grains, folks… a good show perhaps, but nothing more.

As near as we can tell, talk of a possible meteor shower generated from Comet ISON goes all the way back to a NASA Science News article online from April 2013. Radio observers of meteor showers should be alert for a possible surge in activity this week as well, and it may be the case that more radio “pings” will be noted than visual activity what with the light-polluting Full Moon in the sky. The radiant for any would-be “ISON-ids” transits highest in the sky for northern hemisphere observers at around 2 AM local.

But despite what it has going against it, we’d be thrilled if ISON put on one last show anyhow. It’s always worth watching for meteor activity and noting the magnitude and from whence the meteor came to perhaps note the pedigree as to the shower it might belong to.

The next annual dependable meteor shower won’t be until the night of April 21st to the 22nd, when the Spring Lyrids are once again active. And this year may just offer a special treat on May 24th, when researchers have predicted that the Earth may encounter debris streams laid down by Comet 209P LINEAR way back in 1803 and 1924… Camelopardalids, anyone? Now, that’s an exotic name for a meteor shower that we’d love to see trending!

-Catch sight of any “ISON-ids?” we’d love to see ‘em… be sure to post said pics at Universe Today’s Flickr pool.

 

 

Selling Rocks from Outer Space: an Interview with ‘Meteorite Man’ Geoff Notkin

Geoff Notkin at Aerolite Meteorites in Tucson, AZ. (© Geoff Notkin. Used with permission.)

What’s the oldest thing you’ve ever held in your hand? A piece of petrified wood? A fossilized trilobite? A chunk of glacier-carved granite? Those are some pretty old things, sure, but there are even older objects to be found across the world… that came from out of this world. And thanks to “Meteorite Men” co-host, author, and educator Geoff Notkin and his company Aerolite Meteorites, you can own a truly ancient piece of the Solar System that can date back over 4.5 billion years.

Founded in 2005, Aerolite (which is an archaic term for meteorite) offers many different varieties of meteorites for sale, from gorgeous specimens worthy of a world-class museum to smaller fragments that you could proudly — and economically — display on your desk. Recently I had the opportunity to talk in depth with Geoff about Aerolite and his life’s work as a meteorite collector and dealer. Here are some of the fascinating things he had to say…

Geoff holds one of his found meteorites (© Geoff Notkin)
“I promised myself as a kid that one day I would have an actual meteorite.” (© Geoffrey Notkin)

So Geoff, what initially got you interested in meteorites and finding them for yourself?

“It’s been a lifelong passion for me, but I’m lucky in that I can really put my finger on a specific event when I was a kid and that was my mother taking me to the Geological Museum in London when I was six or seven… I was already a rock hound, I loved collecting fossils, and my dad was a very keen amateur astronomer. And so I had this love of astronomy and this fascination with other worlds for as long as I can remember. I’m a very tactile person; I’m very hands-on. I like to know how things work… I want to know all the bits and pieces. I was frustrated a bit, because I wanted to know more about astronomy. I could see all these planets and places through the ‘scope, but I couldn’t touch them. But I could touch rocks and fossils.

“So I’m six or seven years old, and I’m on the second floor of the Museum in the Hall of Rocks and Minerals. And at the back was this small display area that’s very dark. And you walked through an arch, it’s almost like walking into a cave. And it was very low light back there, and that was the meteorite collection.

“There were a couple of large meteorites on stands, and in those days — it was the late 60s — security wasn’t the issue that it is today. So you could touch the big specimens, and so I put my hands on these giant meteorites and I was absolutely enthralled.  And I had this sort of epiphany: meteorites were the locus between my two interests, astronomy and rock-hounding. Because they’re rocks… they’re rock samples from outer space. I promised myself as a kid that one day I would have an actual meteorite.

“By finding or owning meteorites, you are forging a solid and tangible connection with astronomy.”

“Of course at the time there was no meteorite business, no meteorite magazines, there was no network of collectors like there is today. Back in the late 60s when I gave myself this challenge it was like saying I was going to start my own space program! But not only did it come true, it’s become my career.”

One of the meteorites offered at Aerolite.org (© Geoff Notkin)
One of the meteorites offered at Aerolite.org (© Geoffrey Notkin)

What makes Aerolite such a great place to buy meteorites?

“I think the caring for the subject matter really shows on the website. We have the best photography in the entire meteorite industry. I think we have the largest selection… we certainly spend a great deal of time discussing the history and importance of pieces… every single meteorite on our website has a detailed description and in most cases multiple photographs. My view is if you’re going to do something, you should really do it to the best of your ability. We don’t cut any corners, we don’t sell anything unless we’re one hundred percent sure of what it is and where it came from.

“I want buyers and visitors to look at the website and share my sense of wonder about meteorites. I think meteorites are the most wonderful things in existence, they’re actual visitors from outer space — they’re inanimate aliens that have landed on our planet.”

“We do this because we want to share our passion. We stand by every piece that we sell.”

How can people be sure they are getting actual meteorites (and not just funny-looking rocks?)

“This is something that’s more important to pay attention to now than ever. Are there fakes, are there shady people? Yes and yes. If you go on eBay at any given time you will find numerous pieces that are being offered for sale that are either not meteorites at all or are one thing being passed off as another thing. Sometimes this is malicious, sometimes people just don’t know any better. So the best way to buy a meteorite and know that it’s real is to buy from a respected dealer who has a solid history in the field.

“I’m by no means the only person who does this. There are a number of very well-established dealers around the world, and a good place to start is the International Meteorite Collectors Association (of which Geoff is a member) which is an international group with hundreds of members — collectors and dealers… it’s sort of a watchdog group that tries to maintain high standards of integrity in the field.

“My company has a very strict policy of never offering anything that’s questionable.”

“I see fakes all the time,” Geoff added. “On eBay, on websites, in newspaper ads… you do have to be careful. My company has a very strict policy of never offering anything that’s questionable. And we do get offered questionable things. There are some countries that have strict policies about exporting meteorites — Australia and Canada being two of them — and we work very closely with academia in both countries, and we have legally exported meteorites from those countries. Not only do we abide by international regulations, we actively support them.”

Geoff and some of his 'alien'-hunting gadgets in the  Chilean desert. (© Geoff Notkin)
Geoff and some of his ‘alien’-hunting gadgets in the Chilean desert. (© Geoffrey Notkin)

So you not only offer meteorites for sale to the general public, but you also donate to schools and museums.

“We work very closely with most of the world’s major meteorite institutions. I have provided specimens to the American Museum of Natural History in New York, the British Museum of Natural History in London, the Vienna Museum of Natural  History, the Center for Meteorite Studies… we work with almost everyone. When we find something that is new or different or exciting, we always donate a piece or pieces to our colleagues in academia. It’s just the right thing, it’s the right thing to do if you discover something important to make it available to science.

A sample of a beautiful, partially-translucent pallasite meteorite (© Geoff Notkin)
A sample of a beautiful, partially-translucent pallasite meteorite (© Geoffrey Notkin)

“Most universities and museums don’t have acquisitions budgets and can’t afford to buy things that they might like to have. In return they classify the meteorites that we found, and they go into the permanent literature and become more valuable as a result. A meteorite with a history and a name and classification is worth more than a random meteorite that somebody just found in a desert. So everybody benefits, it’s a really good match.”

In other words, you really are making a contribution to science as opposed to just “looting.”

“Exactly. And I have, a very few times, gotten emails from disgruntled viewers who didn’t understand what we were doing, saying ‘what makes you think it’s okay to come to Australia and take our meteorites,’ for example. So I wrote a very courteous email back saying that we were in Australia with the express permission and cooperation of the Australian park services and one of the senior park rangers was there with us. And not only did we follow the proper procedure in having those specimens exported from Australia, I donated rare meteorites to collections just as a ‘thank you’ for working with us. It wasn’t a trade, it was a thank you. So everywhere we go, whatever we do, we try and leave a good impression.”

Geoff added, “I do this out of love… this isn’t the best way to make a living! Being a meteorite hunter is probably not the best capital return on your time but it’s a very exciting and rewarding life in every other way.”

Geoff Notkin is also the host of STEM Journals, an educational show on COX 7 soon entering its third season (© Geoff Notkin)
Geoff Notkin is also the host of STEM Journals, an educational show on COX 7 soon entering its third season (© Geoffrey Notkin)

And thus, by buying meteorites from Aerolite, customers aren’t just helping pay for your expeditions and your work but also supporting research and education too.

“People who purchase from us are really participating in the growth of this science. Also, something very near and dear to my heart is science education for kids. You know that I am the host of an educational series called STEM Journals, which is a very — I think — amusing, entertaining, funny, fast-paced look at science, technology, engineering, and math topics. But you can’t make a living doing television shows like that. This is a labor of love… we do it because we think it’s important. If I didn’t have a commercial meteorite company to help underwrite the costs of educational programming and educational books, we just couldn’t do it. It’s as simple as that.

“So we always try to give back. That’s why I speak at schools and universities and give away meteorites to deserving kids at gem shows… because it was done to me when I was seven years old. The look of wonder you see on a kid’s face when you connect with them and they start to grasp the wonder of science… that’s something they’ll never forget.”

That’s great. And it sounds like you haven’t forgotten it yet either!

“I must say after all these years, I’ve been doing this close to full time for nearly twenty years and you never lose the amazement and the wonder of when a meteorite’s found or uncovered. I never go ‘oh, jeez, it’s just another billion-year-old space rock that fell to Earth!’ So it is a privilege to be in a work field where almost daily something wondrous happens.”

As we here at Universe Today know, when it concerns space that’s a common occurrence!

“Exactly!”

One last thing Geoff… do you think we’ll ever run out of meteorites?

“The meteorite collecting field has grown tremendously in the past ten years, and Meteorite Men is part of that. There is a finite supply of meteorites. Of course there are more landing all the time, but not enough to replenish the demand. Periodically there is a new very large discovery made, such as the Gebil Kamil iron in Egypt a couple of years ago. But what is happening is a significant increase in price and a decrease in selection, so some of the real staples we used to see… you can’t get them anymore.

“Still, people who want a meteorite collection, now is a great time for them to be buying because there are more meteorites available than in the past — but it’s not going to stay that way for very long. It’s like any other collectible that has a finite supply.”

Makes sense… I’ll take that as ‘inside advice’ to place an order soon!

______________

My thanks to Geoff for the chance to talk with him a little bit about his fascinating past, his passion, and his company. And as an added bonus to Universe Today readers, Geoff is extending a special 15% off on orders from Aerolite Meteorites — simply mention the code UNIVERSETODAY when you place an order!* (Trust me — once you browse through the site you’ll find something you want.) Also, if you’re in the Tucson area, Geoff Notkin and Aerolite Meteorites will have a table at the Tucson Gem and Mineral Show starting Jan. 31.

One of several meteorite-hunting books by Geoff, featuring an introduction by Neil Gaiman.
One of several meteorite-hunting books by Geoff, featuring an introduction by Neil Gaiman.

Be sure to check out Geoff’s television show STEM Journals on COX7 — the full first two seasons can be found online here and here, and shooting for the third season will be underway soon.

Want to know how to find “inanimate aliens” for yourself? You can find Geoff’s books on meteorite hunting here, as well as some of the right equipment for the job.

And don’t forget to follow Aerolite Meteorites and Geoff Notkin on Twitter!

 

*Sorry, the code isn’t valid for items already on sale or for select consignment items.

This Town Celebrates Every New Year with a Falling Meteor

Wetumpka Impact Crater geology. Credit: Auburn Astronomical Society
Wetumpka Impact Crater geology. Credit: Auburn Astronomical Society


Video from YouTube User Pam Bergmann

The popular jazz tune “Stars Fell on Alabama” was inspired in part by the Leonid meteor shower in November of 1833, sometimes referred to as “the night the stars fell.” But the central region of Alabama region has a history of meteorite impacts, including a massive impact over 84 million years ago. The town of Wetumpka, Alabama sits in the middle of an ancient 8-kilometer-wide impact crater that was blasted into the bedrock, creating the unique geology of what is now Elmore County.

To celebrate this “striking” heritage, Wetumpka celebrates every New Year’s Eve with a spectacular recreation of a falling, exploding meteor.

Geologists have pieced together the events from millions years ago, when an asteroid nearly the size of a football stadium crashed into what was at the time a coastal basin covered with a shallow sea. The jumbled and disturbed geology of the area hadn’t made sense to local geologists since they started studying it in the 1800’s, and they had no explanations until mapping in the early 1970’s showed that the rocky layers were pointing away from a central location, which led them to suspect some sort of large impact.

However, this location wasn’t verified as an impact crater until fairly recently, when core samples drilled in 1998 confirmed the impact by detecting the presence of shocked quartz. The Wetumpka Impact Crater was officially recognized in 2002, and is now considered to be the best preserved marine impact crater ever discovered.

Meteor Drop, Wetumpka, Alabama (TripAdvisor)Credit: Peggy Blackburn The Wetumpka Herald
Meteor Drop, Wetumpka, Alabama (TripAdvisor)Credit: Peggy Blackburn The Wetumpka Herald

And so, in honor of this history, the folks of Wetumpka have been ringing in the new year by having their own ‘meteor’ streak across the sky and drop to the ground, guided by a wire and followed by fireworks. This event has been recognized as one of the top 10 unique New Year’s Celebrations in the U.S. by TripAdvisor.

You can see the preparation for the event at WSFA 12’s story here.
For more information regarding the crater, visit these sites:
Wetumpka Impact Crater Commission
Wetumpka Meteor Crater Tour by the Auburn Astronomical Society
Wetumpka Impact Crater Page

Also, I was born in Wetumpka, so Happy New Year!

Three-Meter Asteroid Hits Earth’s Atmosphere… Somewhere

Projected path of 2014 AA south of the Cape Verde islands. (Credit: Asteroid Initiatives, LLC)

This was very likely the last trip around the Sun for the Earth-crossing asteroid 2014 AA, according to calculations by several teams of astronomers and published online earlier today on the IAU’s Minor Planet Center. Discovered just yesterday by the Catalina Sky Survey, the estimated 3-meter-wide Apollo asteroid was supposed to clear Earth today by a razor-thin margin of about 611 km (380 miles)… but it’s now looking like it didn’t quite make it.

The diagram above, via Asteroid Initiatives’ Twitter feed, shows a projected path probability pattern for 2014 AA’s re-entry locations. No eyewitness accounts have yet been reported, and if anyone knows of any surveillance cameras aimed in those directions that might have captured footage of a bolide feel free to share that info below in the comments and/or with @AsteroidEnergy on Twitter.

Other calculations put the entry point anywhere between western Africa and Central America.

According to the MPEC report the asteroid “was unlikely to have survived atmospheric entry intact.”

Watch an animation below showing 2014 AA’s point-of-view as it met Earth. (Video courtesy of Pasquale Tricarico, senior scientist at the Planetary Science Institute in Tucson, AZ.)

2014 AA's approach to Earth on Jan. 1-2, 2014 (Pasquale Tricarico/PSI)
Simulation of 2014 AA’s approach to Earth on Jan. 1-2, 2014 (Credit: Pasquale Tricarico/PSI. Used with permission.)

JPL’s Near-Earth Object program classifies Apollo asteroids as “Earth-crossing NEAs with semi-major axes larger than Earth’s (named after asteroid 1862 Apollo).” And while not an Earth-shattering event (fortunately!) this is just another small reminder of why we need to keep watch on the sometimes-occupied path our planet takes around the Sun!

Read the NASA/JPL news release on 2014 AA here.

h/t to Dr. John Barentine for the heads-up!

UPDATE: Based on infrasound analysis by Peter Brown of the University of Western Ontario, 2014 AA likely impacted the atmosphere over the Atlantic around 0300 UTC at 40° west, 12° north — about 1,900 miles east of Caracas, Venezuela. The impact released the equivalent of 500 to 1,000 tons (0.5 – 1 kiloton) of TNT, but far above a remote and uninhabited area. Read more on Sky & Telescope here.

The Quadrantid Meteor Shower-One of the Best Bets for 2014

The modern radiant of the Quadrantid meteor shower. (Photo and grahpics by author).

If there’s one thing we love, it’s a good meteor shower from an obscure and defunct constellation.

Never heard of the Quadrantids?  It may well be because this brief but intense annual meteor shower occurs in the early days of January. Chilly temps greet any would be meteor watchers with hardly the balmy climes of showers such as the August Perseids. Still, 2014 presents some good reasons to brave the cold in the first week of January, to just possibly catch the best meteor shower of the year.

The Quadrantids – sometimes simply referred to as “the Quads” in hipster meteor watcher inner circles – peak on January 3rd around 19:30 Universal Time (UT) or 2:30 PM Eastern Standard Time (EST). This places the northern Asia region in the best position to watch the show, though all northern hemisphere observers are encouraged to watch past 11 PM local worldwide. Remember: meteor showers are fickle beasties, with peak activity often arriving early or late. The Quadrantids tie the December Geminids for the highest predicted Zenithal Hourly Rate (ZHR) for 2014 at 120.

A 2012 Quadrantid meteor in the bottom left side of the frame. (Photo by Author).
A 2012 Quadrantid meteor in the bottom left side of the frame. (Photo by Author).

Though the Quads are active from January 1st to the 10th, the enhanced peak only spans an average of six to ten hours. Though high northern latitudes have the best prospects, we’ve seen Quads all the way down in  the balmy January climes of Florida from around 30 degrees north.

Rates for the Quads are typically less than 10 per hour just a day prior to the sharp peak. The moonless mornings of Friday, January 3rd and Saturday, January 4th will be key times to watch. The radiant for the Quads stands highest just hours before local sunrise.

So, what’s up with the unwieldy name? Well, the Quadrantids take their name from a constellation that no longer exists on modern star charts. Along with the familiar patterns such as Leo and Orion, exist such archaic and obscure patterns as “The Printing Office” and the “Northern Fly” that, thankfully, didn’t make the cut. Quadrans Muralis, or the Mural Quadrant, established by Jérome de Lalande in the 1795 edition of Fortin’s Celestial Atlas was one such creation.  A mural quadrant was a large arc-shaped astronomical tool used for measuring angles in the sky. Apparently, Renaissance astronomers were mighty proud of their new inventions, and put immortalized them in the sky every chance they got as sort of the IPhone 5’s of their day.

The outline of the Mural Quadrant against the backdrop of modern day constellations. (Photo and graphic by author).
The outline of the Mural Quadrant against the backdrop of modern day constellations. (Photo and graphic by author).

The Mural Quadrant spanned the modern day constellations of Draco, Hercules and Boötes. The exact radiant of the Quads lies at Right Ascension 15 Hours 18’ and declination 49.5 degrees north, in the modern day constellation Boötes just 15 degrees east of the star Alkaid.

Previous year’s maximum rates as per the IMO have been as follows:

2013: ZHR=129

2012: ZHR=83

2011: ZHR=90

2010: ZHR=No data (Bright waning gibbous Moon)

2009: ZHR=138

The parent source of the Quadrantids went unknown, until Peter Jenniskens proposed that asteroid 2003 EH1 is a likely suspect. Possibly an extinct comet, 2003 EH1 reaches perihelion at 1.2 AUs from the Sun in 2014 on March 12th, another reason to keep an eye on the Quads in 2014. 2003 EH1 is on a 5.5 year orbit, and it’s been proposed that the asteroid may have a connection to comet C/1490 Y1 which was observed and recorded by 15th century astronomers in the Far East.

The Quadrantids were first identified as a distinct meteor shower in the 1830s by European observers. Owing to their abrupt nature and their climax during the coldest time of the year, the Quadrantids have only been sporadically studied. It’s interesting to note that researchers modeling the Quadrantid meteor stream have found that it undergoes periodic oscillations due to the perturbations from Jupiter. The shower displays a similar orbit to the Delta Aquarids over a millennia ago, and researchers M. N. Youssef and S. E. Hamid proposed in 1963 that the parent body for the shower may have been captured into its present orbit only four thousand years ago.

The orbital path of Amor NEO asteroid 196256 2003 EH1. (Credit: NASA/JPL Solar System Dynamics Small-Body Database Browser).
The orbital path of Amor NEO asteroid 196256 2003 EH1. (Credit: NASA/JPL Solar System Dynamics Small-Body Database Browser).

2003 EH1 is set to resume a series of close resonnance passes of Earth and Jupiter in 2044, at which time activity from the Quads may also increase. It’s been proposed that the shower may fade out entirely by the year 2400 AD.

And the Quadrantids may not be the only shower active in the coming weeks. There’s been some discussion that the posthumous comet formerly known as ISON might provide a brief meteor display on or around the second week of January.

Be sure to note any meteors and the direction that they’re coming from: the International Meteor Organization and the American Meteor Society always welcomes any observations. Simple counts of how many meteors observed and from what shower (Quads versus sporadics, etc) from a given location can go a long way towards understanding the nature of this January shower and how the stream is continually evolving.

Stay warm, tweet those meteors to #Meteorwatch, and send those brilliant fireball pics in to Universe Today!

 

101 Astronomical Events for 2014

An early Draconid meteor caught by astrophotographer Cory Schmitz. (Used with permission?)

It’s here!

As 2013 draws to a close, we once again cast our thoughts to all things astronomical for the coming year. For the past five years, I’ve been constructing this list of all things astronomical for the coming year, lovingly distilling the events transpiring worldwide down to a 101 “best events of the year”. This is the first year this list has been featured on Universe Today, so we’ll lay out our ground rules and reasoning a bit as to selection criteria.

Events selected run the gamut from conjunctions and eclipses that are visible worldwide or over a good swath of the planet, to asteroid occultations of stars that are only visible along a thin path along the surface of the Earth. Geocentric conjunction times for occultations are quoted. Generally, only conjunctions involving bright stars, planets & the Moon are noted. The intent of this list is to bridge the gap between the often meager “10 Best Astronomy Events of 2014” listicles that make their rounds this time of year and the more tedious laundry lists of Moon phases and wide conjunctions.

As always, we look at the coming year with an eye out for the astronomically curious and the bizarre. Times are quoted in Universal Time (UT) using a 24-hour clock, which is identical to Greenwich Mean Time (GMT) and Zulu for those in the military.

Some caveats as to how selections were made:

-To make the cut, asteroid occultations must have a rank of 99 or greater, and occult a star brighter than +8th magnitude.

– We only selected major annual meteor showers with a Zenithal Hourly Rate (ZHR) projected to be 20 or greater.

– Only lunar occultations of planets and bright stars are listed.

– Solstice seasons where the International Space Station reaches full illumination are approximate; the ISS gets boosted periodically, and therefore it’s impossible to project its precise orbit months in advance.

– Comets come and go. The comets included on this list are some of the “best bets” that are forcasted to reach binocular visibility for 2014. A big bright one could come up and steal the show at any time!

This list was meant to “whet the appetite” for what’s coming to skies worldwide in 2014 with a succinct rapid fire listing by month. Where an online resource exists that expands on the event, we linked to ‘em. A full resource list, both paper and cyber, is given at the end of the post. Print these events, post it on your refrigerator and/or observatory wall, and expect us to feature many these fine events on Universe Today in the coming year!

Some notes on 2014:

2014 sees Mars reach opposition in early April, which is sure to be a highlight as we head towards an exceptionally close opposition in 2018.

The month of February is also missing a New Moon, which last occurred in 1995 and won’t happen again until 2033. February is the only calendar month which can be missing the same moon phase twice!

We’re also coming off a profoundly weak solar maximum in 2014, though as always, the Sun may have some surprises in store for solar observers and aurora watchers worldwide.

The motion of the Moon in 2014 is headed towards a “shallow” year in 2015 relative to the ecliptic; it will then begin to slowly open back up and ride high around 2025.

2014 also contains the minimum number of eclipses that can occur in one year, 2 solar and 2 lunar. And while there are no total solar eclipses in 2014, there are two fine total lunar eclipses, both visible from North America.

And here’s the month by month rundown:

Moon Jan 1
The view looking west from the US east coast at 6 PM on January 1st from latitude 30 degrees north. (Created in Stellarium).

January

01- The extremely thin crescent 12-15 hour old Moon will present a challenge for North American viewers low to the west at dusk.

03- Quadrantid meteors peak with a ZHR=120 at ~05:00 UT, best seen from the Atlantic region. Favorable in 2014, with the Moon a 2 day old waxing crescent.

04- Earth reaches perihelion at 12:00 UT, 147.1 million kilometres from the Sun.

04- Mars passes 1.3’ from the +11.5th magnitude galaxy NGC 4684.

05- Jupiter reaches opposition for 2014 and shines at magnitude -2.7.

10- A Possible meteor shower due to dust from the Comet (formerly known as) ISON over the next few days?

11- Venus reaches inferior conjunction between the Sun and the Earth, shining at -4th magnitude. It may be just possible to spot it five degrees north of the solar limb from high northern latitudes.

13- Moon reaches its farthest northern declination for 2014 a 19.4 degrees.

16- The most distant Full Moon, and visually smallest Full Moon of 2014 occurs, with the Moon reaching Full within two hours of apogee. MiniMoon!

25- The Moon occults Saturn for the South Pacific at ~13:58 UT.

27- The Moon reaches its farthest southern declination for 2014, at -19.3 degrees.

30- A Black Moon occurs, as reckoned as the second New Moon in a month with two.

31- Mercury reaches a favorable elongation, shining at magnitude -0.9, 18.4 degrees east of the Sun.

Venus occultation footprint for
Venus occultation footprint for February 26th. (Created using Occult v4.1.0).

February

06- Two shadows transit the cloud tops of Jupiter from 10:20 UT-12:44 UT, favoring western North America.

21- The Moon occults Saturn for the Indian Ocean at ~22:18 UT.

26- The 14% waning crescent Moon occults Venus for central Africa at ~5:23 UT.

March

07- Asteroid 9 Metis occults a +7.9 magnitude star for Europe ~3:14 UT.

10- The 70% illuminated waxing gibbous Moon occults the +3.6 magnitude star Lambda Geminorum for North America in the evening sky.

14- Mercury reaches greatest morning elongation at 27.5 degrees west of the Sun shining at magnitude +0.1. Mercury’s best morning apparition in 2014 for southern hemisphere observers.

16- A double shadow transit of Jupiter’s moons occurs from 22:20 to 00:35 UT, visible from Atlantic Canada after sunset.

20- The Northward Equinox occurs at 16:57 UT.

20- GEO satellite eclipse season occurs, as geostationary satellites enter Earth’s shadow near the equinox.

20- Regulus is occulted by asteroid 163 Erigone for the NE United States and Canada at ~6:07 UT, The brightest star occulted by an asteroid in 2014.

21- The Moon occults Saturn for the South Atlantic at ~3:18 UT.

24- A double shadow transit of Jupiter’s moons occurs from 2:08 to 2:28 UT, favoring eastern North America.

24- Asteroid 172 Baucis occults a +6.7 magnitude star for South America at ~9:27 UT.

22- Venus reaches greatest morning elongation, at 47 degrees west of the Sun.

28- Asteroid 51 Nemausa occults a +7.7 magnitude star for Africa at 20:02 UT.

30- A Black Moon occurs, as reckoned as the second New Moon in one month.

The viewing prospects for the April 15th Total Lunar Eclipse. (Credit: NASA/GSFC/
The viewing prospects for the April 15th Total Lunar Eclipse. (Credit: NASA/GSFC/Espenak/Meeus).

April

08- Mars reaches opposition for 2014, shining at magnitude -1.5.

12- A close conjunction of Venus and Neptune occurs, with the planets just 0.7 degrees apart at 2:00 UT.

15- A Total Lunar Eclipse occurs, visible from the Americas and centered on 7:47 UT.

17- The Moon occults Saturn for South America at ~7:19 UT.

29- An Annular Solar Eclipse visible from Australia and the southern Indian Ocean occurs, centered on 6:05 UT. This is a unique, non-central antumbral eclipse!

May

03- Asteroid 105 Artemis occults a +7.7 magnitude star for NW Brazil and Peru at ~9:17 UT.

04- Asteroid 34 Circe occults a +7.4 magnitude star for Peru and Ecuador at ~10:12 UT.

06- The closest lunar apogee of 2014 occurs at 404,318 km distant at 10:23 UT.

07- Eta Aquariid meteors peak, with a ZHR=55 at 4:00 UT. Best observed from the Atlantic Region. Favorable in 2014, with the 7-day old Moon at waxing gibbous.

07- Asteroid 206 Hersilia occults a +7.5 magnitude star for Australia and Indonesia at ~17:49 UT.

10- Saturn reaches opposition for 2014, shining at magnitude +0.1. Saturn’s rings are tipped open a maximum of 23 degrees to our line of sight on February 11th, and widening overall in 2014.

13- A double shadow transit of Jupiter’s moons occurs from 9:20-9:32 UT favoring NW North America.

14- The Moon occults Saturn for Australia and New Zealand at ~12:18 UT.

24- A meteor shower outburst may be in the offing, courtesy of Comet 209P LINEAR. Will the “Camelopardalids” perform?

24- Asteroid 33 Polyhymnia occults a +5.5 magnitude star for South America at ~8:30 UT.

25- Mercury reaches maximum dusk elongation, 22.7 degrees east of the Sun. Mercury’s best evening apparition for 2014 for northern hemisphere viewers.

The triple shadow transit of June 3rd, as seen at 18:00 UT. (Created by the author using Starry Night).
The triple shadow transit of June 3rd, as seen at 19:00 UT. (Created by the author using Starry Night).

 June

3- A triple Jovian shadow transit occurs from 18:05-19:44 UT, favoring eastern Europe and Africa. This is the only triple shadow transit for 2014.

10- The Moon occults Saturn for the southern Indian Ocean at ~18:48 UT.

21- The Northward Solstice occurs at ~10:51 UT.

22- The International Space Station enters a period of full illumination near the June solstice, favoring multiple views for northern hemisphere viewers.

24- The waning crescent Moon passes within a degree of Venus, a great time for spotting the planet in the daytime.

26- The Moon occults Mercury just 20 hours prior to New… a tough catch, but may visible from the SE US and Venezuela just before sunrise.

27- The June Boötid meteors peak, with a ZHR variable from 0-100 at ~15:00 UT, favoring the Central Pacific. Optimal in 2014, as the Moon is at New phase.

July

04- Earth reaches aphelion at 2:00 UT, at 152,098,232 kilometres from the Sun.

04- Pluto reaches opposition at 3:00 UT.

05– 1 Ceres passes just 10’ from 4 Vesta in the constellation Virgo.

06– The Moon occults Mars for South America at ~01:21 UT

08– The Moon occults Saturn for Argentina & Chile at ~2:25 UT.

12- Mercury reaches its maximum elongation of 20.9 degrees west of the Sun, shining at magnitude +0.4 in the dawn.

12– The first Full Proxigean “Super” Moon (1 of 3) for 2014 occurs at 11:27 UT. The Moon reaches Full 21 hours prior to perigee.

30– The Southern Delta Aquarids peak, with a ZHR=20. Time variable, favorable in 2014 with the waxing crescent Moon 4 days past New.

20– Asteroid 451 Patientia occults a +7.1 magnitude star for South Africa at ~17:15 UT.

28- The farthest lunar apogee of 2014 occurs, with the Moon 406,568 kilometres distant at 3:28 UT.

30– Asteroid 103 Hera occults a +6.1 magnitude star for west Africa and central South America at ~1:11 UT.

A tri-conjunction of the Moon, Venus & Jupiter- A "Skewed Smiley face" conjunction!" Credit:  Stellarium
A tri-conjunction of the Moon, Venus & Jupiter on the morning of August 23rd- A “Skewed Smiley face” conjunction!” Credit: Stellarium).

August

02– A close conjunction of Mercury and Jupiter occurs, with the planets just 0.9 degrees apart at 19:00 UT. Visible in SOHO’s LASCO C3 camera.

04- The Moon occults Saturn for Australia at ~10:31 UT.

10– The closest lunar perigee of 2014 occurs, with the Moon 356,896 kilometres distant at 17:44 UT.

10- The Closest Full Moon of the year & “Super” Moon (2 of 3) for 2014 occurs, with Full Moon occurring just 27 minutes after perigee.

13– The Perseid meteors peak, with a ZHR=100 at ~04:00 UT favoring The Atlantic region. Unfavorable in 2014, with the 17 day old Moon at waning gibbous.

18- A conjunction of Venus and Jupiter occurs 5:00 UT, the closest conjunction of two naked eye planets in 2014, with the two just 15’ apart.

29- Neptune reaches opposition at 14:00 UT, shining at +7.8 magnitude.

31– The Moon occults Saturn for Africa and the eastern US (in the daytime) at ~18:59.

September

05- Venus passes 0.7 degrees from the bright star Regulus.

09– The final Full “Super” Moon (3 of 3) for 2014 occurs at 1:39 UT, just 22 hours after perigee.

15– Comet C/2013 V5 Oukaimeden may reach +5.5th magnitude for southern hemisphere observers.

20– Mercury passes 0.5 degrees south of the bright star Spica at 21:00 UT.

21- Mercury reaches its greatest elongation of 26.4 degrees east of the Sun shining at magnitude +0.0 in the dawn sky. Mercury’s best sunset apparition for 2014 for southern hemisphere observers.

23- The Southward Equinox occurs at 2:29 UT.

23- GEO satellite eclipse season occurs, as geostationary satellites enter Earth’s shadow near the equinox.

28– The Moon occults Saturn for the northern Pacific at ~4:25 UT. The Moon also occults 1 Ceres and 4 Vesta on the same day!

The path of Comet C/2013 A1 Siding Springs versus the planet Mars through October, 2014. (Created by the author using Stellarium).
The path of Comet C/2013 A1 Siding Springs versus the planet Mars through October, 2014. (Created by the author using Starry Night).

 October

04- 1 Ceres passes just 30’ north of Saturn.

06- Possible Draconid meteor shower, highly variable in terms of rates and timing, but unfavorable in 2014, with the Moon just two days from Full.

08- A Total Lunar Eclipse visible from the Pacific Rim region occurs, centered on 10:56 UT. The planet Uranus will also lie less than a degree away from the eclipsed Moon!

14- Comet C/2012 K1 PanSTARRS may reach +5th magnitude for southern hemisphere viewers.

13– The Moon reaches it shallowest northern declination for 2014 at +18.5 degrees.

19- Comet C/2013 A1 Siding Spring passes just 7’ from the planet Mars. Globular cluster NGC 6401 also lies nearby.

22– The Orionid meteor shower peaks at ~05:00 UT, with a predicted ZHR=25 favoring the Americas. Optimal in 2014, with the Moon at waning crescent.

22– The Moon occults Mercury for Australia just 24 hours prior to New as seen from Australia.

23- A Partial Solar Eclipse visible from western North America occurs centered on 21:46 UT.

25- The Moon occults Saturn for the northern Atlantic at ~15:43 UT.

25- The Moon reaches its shallowest southern point for 2014, at a declination of -18.6 degrees.

The partial solar eclipse of October 23rd, 2014. (Credit: NASA/GSFC/Fred Espenak).
The partial solar eclipse of October 23rd, 2014. (Credit: NASA/GSFC/Fred Espenak).

 November

01- Mercury reaches its greatest elongation 18.7 degrees west of the Sun, shining at magnitude -0.5. The best morning apparition of Mercury for 2014 as seen from the northern hemisphere.

18– Leonid meteors peak at 05:00 UT with a ZHR=20 favoring the Atlantic region. Optimal in 2014, with the 25 day old Moon at waning crescent phase.

20- Asteroid 3 Juno occults a +7.4 magnitude star for the US NE and eastern Canada.

27- The farthest lunar perigee of 2014 occurs with the Moon 369,824 km distant at 23:12 UT.

December

09- A double shadow transit of Jupiter’s moons occurs from 4:18 to 4:27 UT favoring eastern North America.

12- A double shadow transit of Jupiter’s moons occurs from 16:19 to 16:44 UT favoring NW North America.

13- The Geminid meteors peak with a ZHR=120 at ~01:00 UT, favoring the Middle East & Eastern Europe. Unfavorable in 2014, with the 20 day old  Moon at waning gibbous.

18- Asteroid 702 Alauda occults a +6.2 magnitude star at 14:12 UT for eastern Australia.

21- The Southward Solstice occurs at 23:03 UT.

21- The International Space Station enters period of full illumination around the solstice, with multiple nightly views favoring the southern hemisphere.

21- A double shadow transit of Jupiter’s moons occurs from 14:17 to 15:55 UT, favoring the Far East and Australia.

Don’t see your favorite or most anticipated event of 2014 on the list? Drop us a line and let us know!

Links & Resources Used:

-The American Meteor Society list of 2014 showers

-NASA’s Eclipse Website

-The United States Naval Observatory’s Astronomical Almanac Online

-Guy Ottewell’s 2014 Astronomical Calendar

-The Royal Astronomical Society of Canada’s 2014 Observer’s Calendar

-Steve Preston’s list of asteroid occultation events for 2014

Stellarium

Starry Nite

-Seiichi Yoshida’s Comet website

-Fourmilab’s Lunar Apogee and Perigee calculator

Heavens-Above

-The International Occultation Timing Association’s list of lunar occultations for 2014.

And finally, thanks to all of those too numerous to name who provided discussions/diatribes/input via Twitter/G+/message boards/etc to make this listing possible… let another exciting year of astronomy begin!

 

 

 

 

Get Ready for the 2013 Geminid Meteor Shower

The rising radiant of the Geminids-Looking east at 9PM local from latitude 30 degrees north. (Credit-Stellarium).

One of the best annual meteor showers occurs this coming weekend.

The 2013 Geminid meteors peak this coming Saturday on December 14th. This shower has a broad maximum, assuring that observers worldwide get a good look. In 2013, the maximum for the Geminids is forecast to span from 13:00 Universal Time (UT) on Friday, December 13th to 10:00UT/5:00AM EST on Saturday, December 14th, with a projected maximum centered a few hours earlier at 2:00 UT Saturday morning.

This is good news  for observers spanning both sides of the Atlantic, who should be well placed to catch the event. Keep in mind, meteor showers often peak hours before or after predictions… we certainly don’t know everything that a given meteor stream might have in store!

An all-sky composite of the 2008 Geminid meteor shower. (Credit: NASA/MSFC/Bill Cooke, NASA's Meteoroid Environment Office).
An all-sky composite of the 2008 Geminid meteor shower. (Credit: NASA/MSFC/Bill Cooke, NASA’s Meteoroid Environment Office).

But the time to start watching is now. We’ve already seen a few early Geminids this past weekend, and this shower is notable for showing early activity for northern hemisphere observers before local midnight. This is because the radiant, or the direction that the meteors seem to emanate from lies at a high northern declination of 33 degrees north near the star Castor, also known as Alpha Geminorum.

The typical Zenithal Hourly Rate for the Geminids is 80-120, or about 1 to 2 per minute. Keep in mind, the ZHR is an ideal rate, assuming dark skies, with the radiant positioned directly overhead. Most observers will see significantly less activity.

The 2013 Geminids also have to contend with the waxing gibbous Moon, which reaches Full just 3 days after the shower’s expected maximum. This will give observers a dwindling window between moonset and the start of dawn twilight to catch the Geminids at their best.

We always thought that the Geminids had a bit of an undeserved PR problem among annual showers. This no doubt stems from the fact that they arrive in the chilly month of December, a time when fingers go numb, camera batteries die, and conducting a vigil for meteors is challenging.

A 2012 Geminid captured by the author from Mars Hill. North Carolina.
A 2012 Geminid captured by the author from Mars Hill, North Carolina.

This shower is an interesting one though, with an equally interesting history and source. The Geminids were first identified as a distinct meteor shower by R.P. Greg of Manchester UK in 1862, and the estimated ZHR rose from about 20 to 80 through the 20th century. The parent source of the Geminids remained unknown until 1983, when astronomer Fred Whipple linked them to the strange “rock-comet” body 3200 Phaethon. An Apollo asteroid also thought to be a member of the Pallas family of asteroids, 3200 Phaethon seems to be shedding enough material to produce the annual Geminid meteor shower. This makes the annual shower rare as one not produced by a comet. It’s worth noting that 3200 Phaethon also passes extremely close – 0.14 AU – from the Sun at perihelion, and gets periodically “baked” during each 1.4 year passage.

In the 21st century, rates for the Geminids have stayed above a ZHR of 120, currently the highest of any annual shower. It’s worth noting that an extrapolated ZHR of almost 200 were seen in 2011 when the Moon was at an equally unfavorable waning gibbous phase! The Geminids always produce lots of fireballs, capable of being seen even under moonlit skies.

There are also two other showers currently active to watch for this week. One is the Ursid meteors, which radiate from the Little Dipper (Ursa Minor) with a peak ZHR of 10-50 occurring on December 22nd. Also, keep an eye out for Andromedid meteors this week, a defunct shower that may be making a comeback. The source of several great meteor storms in the late 19th century, the Andromedid parent source is the shattered comet formerly known as 3D/Biela.

An early Geminid crosses pathes with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).
An early Geminid crosses paths with Comet 2013 R1 Lovejoy. (Credit: Jason Hullinger).

Though the Geminids appear to radiate from the constellation Gemini, they can appear anywhere in the sky. Tracing the path back can determine the source constellation and the “membership” of a given meteor. Random meteors not associated with any identified shower are known as “sporadics.” Block that pesky light-polluting Moon behind a building or hill to optimize your chances of catching sight of a meteor. Employing a friend or two to watch in different directions will also maximize the number seen. The International Meteor Organization always welcomes reports from observers… this is real science that you can contribute to using nothing more sophisticated than your eyes!

The Geminids are medium-speed meteors with an average atmospheric velocity of about 35 kilometres per second, often leaving long, glowing trails worth examining with a pair of binoculars. You might note an apparent surge in speed to this shower past local midnight, as your vantage point turns into the oncoming shower, adding the velocity of the Earth to the approaching Geminids.

Photographing meteors is fun and easy to do; all you’ll need is a DSLR camera mounted on a tripod. Take several manual setting exposures to get the combination of ISO,F-stop, and shutter speed correct for your local sky conditions.  Then simply set the focus to infinity, and use the widest field of view possible. Catching meteors is surreptitious, as they can appear anywhere – and at any time – in the sky. Be sure to thoroughly review those images afterwards… nearly every meteor we’ve caught photographically went unnoticed during observation!

Also, remember that cold weather plus long exposure times can conspire to drain camera batteries in a hurry. Be sure to keep a spare set of charged batteries ready to go in a warm pocket!

How powerful will the Geminids become? Are we in for a “return of the Andromedids” moving towards 2014? One thing is for sure: you won’t see any meteors if you don’t try. So be sure to get out there, pour a mug of your favorite warming beverage, and don’t miss the 2013 Geminid meteor shower!

–      Got meteors? Be sure and tweet ‘em to #Meteorwatch.

–      Be sure to send those pics of Geminids and more in to Universe Today.

Here Comes the Weekend Leonid Meteor Shower!

November 2013 offers a chance to catch a dependable meteor shower, albeit on an off year. The Leonid meteors are set to reach their annual peak this coming weekend on Sunday, November 17th. We say it’s an off-year, but not that it should discourage you from attempting to catch the Leonids this weekend in the early dawn.

Projections for 2013 suggest a twin-peaked maximum, with the first peak arriving on November 17th at 10:00 UT/5:00 AM EST favoring North America, and the second one reaching Earth on the same date six hours later at 16:00 UT/11:00, favoring the central Pacific.

Unfortunately, the Full Moon also occurs the on very date that the Leonids peak at 10:16 AM EST/ 15:16UT, right between the two peaks! This will definitely cut down on the number of meteors you’ll see in the early AM hours.

That’s strike one against the 2013 Leonids. The next is the curious sporadic nature of this shower. Normally a minor shower with a zenithal hourly rate (ZHR) in the range of 10-20 per hour, the Leonids are prone to great storms topping a ZHR of 1,000+ every 33 years. We last experienced such an event in 1998 and 1999, and we’re now approaching the mid-point lull between storms in the 2014-2016 time frame.

An early Leonid meteor captured last week from the United Kingdom Meteor Observing Network's Church Crookham station. (Credit: UKMON/Peter-Campbell-Burns).
An early Leonid meteor captured last week from the United Kingdom Meteor Observing Network’s Church Crookham station. (Credit: UKMON/Peter-Campbell-Burns).

Still, this is one shower that’s always worth monitoring. The source of the Leonids is Comet 55p/Tempel-Tuttle, which is on a 33-year orbit and is due to reach perihelion again in 2031.

Note that the Leonids have also continued to show enhanced activity in past years even when the Moon was a factor:

2012- ZHR=47.

2011- ZHR=22, Moon=8% waning gibbous.

2010- ZHR=40, 86% waxing gibbous.

2009- ZHR=79.

2008-70 ZHR=72% waning gibbous

We even managed to observe the Leonid meteors from Vail, Arizona in 2002 and 2005, on years when the Moon was nearly Full.

Now, for the good news. The Leonids have a characteristic r value of 2.5, meaning that they produce a higher than normal ratio of fireballs. About 50-70% of Leonid meteors are estimated to leave persistent trains, a good reason to keep a pair of binoculars handy. And hey, at least the 2013 Leonids peak on the weekend, and there’s always comet’s ISON, X1 LINEAR, 2P/Encke and R1 Lovejoy to track down to boot!

A 2002 Leonid captured over Redstone Arsenal, Alabama. (Credit: NASA/MSFC/MEO/Bill Cooke).
A 2002 Leonid captured over Redstone Arsenal, Alabama. (Credit: NASA/MSFC/MEO/Bill Cooke).

Here’s a few tips and tricks that you can use to “beat the Moon” on your Leonid quest. One is to start observing now, on the moonless mornings leading up to the 17th. You’ll always see more Leonid meteors past local midnight as the radiant rises to the northeast. This is because you’re standing on the portion of the Earth turning forward into the meteor stream. Remember, the front windshield of your car (the Earth) always collects the most bugs (meteors). Observers who witnessed the 1966 Leonid storm reported a ZHR in excess of thousands per hour, producing a Star Trek-like effect of the Earth plowing through a “snowstorm” of meteors!

The radiant of the Leonids sits in the center of the backwards question mark asterism of the “Sickle” in the astronomical constellation Leo (hence name of the shower).

You can also improve your prospects for seeing meteors by blocking the Moon behind a building or hill. Though the Leonids will appear to radiate from Leo, they can appear anywhere in the sky. Several other minor showers, such as the Taurids and the Monocerotids, are also active in November.

Meteor shower photography is simple and can be done with nothing more than a DSLR camera on a tripod. This year, you’ll probably want to keep manual exposures short due to the Full Moon and in the 20 seconds or faster range. Simply set the camera to a low f-stop/high ISO setting and a wide field of view and shoot continuously. Catching a meteor involves luck and patience, and be sure to examine the frames after a session; every meteor I’ve caught on camera went unnoticed during observation! Don’t be afraid to experiment with different combinations to get the sky conditions just right. Also, be sure to carry and extra set of charged camera batteries, as long exposures combined with chilly November mornings can drain DSLR batteries in a hurry!

A Woodcut print depicting the 1933 Leonids as seem from Niagara Falls. (Wikimedia Commons image in the Public Domian).
A Woodcut print depicting the 1933 Leonids as seem from Niagara Falls. (Wikimedia Commons image in the Public Domain).

The Leonids certainly have a storied history, dating back to before meteors where understood to be dust grains left by comets. The 1833 Leonids were and awesome and terrifying spectacle to those who witnessed them up and down the eastern seaboard of the U.S. In fact, the single 1833 outburst has been cited as contributing to the multiple religious fundamentalist movements that cropped up in the U.S. in the 1830s.

We witnessed the 1998 Leonids from the deserts of Kuwait while stationed at Al Jabber Air Base. It was easily one of the best meteor displays we ever saw, with a ZHR reaching in access of 500 per hour before dawn. It was intense enough that fireballs behind us would often light up the foreground like camera flashes!

Reporting rates and activity for meteor showers is always fun and easy to do — its real science that you can do using nothing more than a stopwatch and your eyes. The International Meteor Association is always looking for current meteor counts from observers. Data goes towards refining our understanding and modeling of meteor streams and future predictions. The IMO should also have a live ZHR graph for the 2013 Leonids running soon.

Have fun, stay warm, send those Leonid captures in to Universe Today, and don’t forget to tweet those meteors to #Meteorwatch!

Newly Released Security Cam Video Shows Chelyabinsk Meteorite Impact in Lake Chebarkul

The 20-foot (6-meter) hole punched through the ice on Chebarkul Lake by a large fragment of the Chelyabinsk meteorite. Credit: AP


Security camera video showing the impact of the largest piece of the Chelyabinsk meteorite striking Lake Chebarkul during the Feb. 15, 2013 Russian fireball. Credit: Nikolaj Mel’nikov.

When I first watched this video of the half-ton Chelyabinsk meteorite crashing into Lake Chebarkul last Feb. 15 I didn’t see anything. But once you pay close attention, what you’ll see is nothing short of amazing. You’ll recall that a 20-foot (6 meter) hole appeared in the ice immediately after the fall. While no one witnessed the impact, a security camera caught the critical moment from the other side of the lake.

The video recently appeared in an online presentation by Peter Jenniskens, noted meteorite expert and senior research scientist at the SETI Institute. It was released as part of a paper and Powerpoint on the Chelyabinsk airburst. You can listen to Jenniskens’ presentation HERE.

Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.
Frame grab from the video showing the breakdown of the impact and resulting ice and snow cloud.

When you watch the video, focus your attention just to the left of what looks like an ice fishing shack at top center and use the handy frame grab above. In the slowed-down portion of the footage you’ll see a cloud of ice and snow blow up and quickly drift to the right of the shack  seconds after impact. While blurry and small, it’s amazing good fortune we have a document of this fall.


Video of the recovery of the largest piece of the Chelyabinsk meteorite

Divers ultimately fished the 1/2 ton Chelyabinsk meteorite – the largest found so far – from the lake on Oct. 16. It measured 5 feet long (1.5 meter) and broke into three pieces as scientists hoisted it into a scale to weigh it.

As a return favor,  the little piece of heaven broke the scale.