JWST Sees Organic Molecules Swirling Around a Newborn Star

A newborn star in the Lupus 1 Molecular cloud is showing complex organic molecules that could be life precursors. The Webb space telescope is studying this cloud to find these chemicals. Courtesy Gabriel Rodrigues Santos. From https://science.nasa.gov/barnard-228-dark-wolf-nebula-lupus
A newborn star in the Lupus 1 Molecular cloud is showing that complex organic molecules exist it its birth cloud. They could be life precursors. The Webb space telescope is studying this cloud to find these chemicals. Courtesy Gabriel Rodrigues Santos. From https://science.nasa.gov/barnard-228-dark-wolf-nebula-lupus

One of the most interesting questions we can ask is, “How did life form?”. To answer it, scientists go back to look at the basic chemical building blocks of life. Those are water, carbon-based organic molecules, silicates, and others. The James Webb Space Telescope offered a peek at the gases, ice particles, and dust surrounding a newborn star and found organic molecules exist there.

Continue reading “JWST Sees Organic Molecules Swirling Around a Newborn Star”

Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?

This artist’s impression shows the planet Proxima b orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The double star Alpha Centauri AB also appears in the image between the planet and Proxima itself. Proxima b is a little more massive than the Earth and orbits in the habitable zone around Proxima Centauri, where the temperature is suitable for liquid water to exist on its surface. Credit: ESO/M. Kornmesser

To date, 5,250 extrasolar planets have been confirmed in 3,921 systems, with another 9,208 candidates awaiting confirmation. Of these, 195 planets have been identified as “terrestrial” (or “Earth-like“), meaning that they are similar in size, mass, and composition to Earth. Interestingly, many of these planets have been found orbiting within the circumsolar habitable zones (aka. “Goldilocks zone”) of M-type red dwarf stars. Examples include the closest exoplanet to the Solar System (Proxima b) and the seven-planet system of TRAPPIST-1.

These discoveries have further fueled the debate of whether or not these planets could be “potentially-habitable,” with arguments emphasizing everything from tidal locking, flare activity, the presence of water, too much water (i.e., “water worlds“), and more. In a new study from the University of Padua, a team of astrobiologists simulated how photosynthetic organisms (cyanobacteria) would fare on a planet orbiting a red dwarf. Their results experimentally demonstrated that oxygen photosynthesis could occur under red suns, which is good news for those looking for life beyond Earth!

Continue reading “Do Red Dwarfs Provide Enough Sunlight for Plants to Grow?”

The Raw Materials for Life Form Early on in Stellar Nurseries

This is a two-panel mosaic of part of the Taurus Giant Molecular Cloud, the nearest active star-forming region to Earth. The darkest regions are where stars are being born. Inside these vast clouds, complex chemicals are also forming. Image Credit: Adam Block /Steward Observatory/University of Arizona

Life doesn’t appear from nothing. Its origins are wrapped up in the same long, arduous process that creates the elements, then stars, then planets. Then, if everything lines up just right, after billions of years, a simple, single-celled organism can appear, maybe in a puddle of water on a hospitable planet somewhere.

It takes time for the building blocks of stars and planets to assemble in space, and the building blocks of life are along for the ride. But there are significant gaps in our understanding of how all that works. A new study is filling in one of those gaps.

Continue reading “The Raw Materials for Life Form Early on in Stellar Nurseries”

Worlds Bustling With Plantlife Should Shine in a Detectable Wavelength of Infrared

Artist's rendering of a super-Earth-type exoplanet, TOI 1452 b. Credit: Benoit Gougeon, Université de Montréal.

Future historians might look back on this time and call it the ‘exoplanet age.’ We’ve found over 5,000 exoplanets, and we’ll keep finding more. Next, we’ll move beyond just finding them, and we’ll turn our efforts to finding biosignatures, the special chemical fingerprints that living processes imprint on exoplanet atmospheres.

But there’s more to biosignatures than atmospheric chemistry. On a planet with lots of plant life, light can be a biosignature, too.

Continue reading “Worlds Bustling With Plantlife Should Shine in a Detectable Wavelength of Infrared”

We Could Spread Life to the Milky Way With Comets. But Should We?

Gerald Rhemann captured this incredible image of Comet Leonard when a piece of the comet's tail was disconnected and carried away. Rhemann won Astronomy Photographer of the Year 2022 for the image. Image Credit: Gerald Rhemann

Here’s a thorny problem: What if life doesn’t always appear on planets that can support it? What if we find more and more exoplanets and determine that some of them are habitable? What if we also determine that life hasn’t appeared on them yet?

Could we send life-bringing comets to those planets and seed them with terrestrial life? And if we could do that, should we?

Continue reading “We Could Spread Life to the Milky Way With Comets. But Should We?”

Meteorites Bathed in Gamma Rays Produce More Amino Acids and Could Have Helped Life get Going on Earth

Carbonaceous chondrites like the Allende meteorite contain significant amounts of water and amino acids. Could they have delivered amino acids to early Earth and spurred on the development of life? Image Credit: By Shiny Things - originally posted to Flickr as AMNH - Meteorite, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=4196153

Our modern telescopes are more powerful than their predecessors, and our research is more focused than ever. We keep discovering new things about the Solar System and finding answers to long-standing questions. But one of the big questions we still don’t have an answer for is: ‘How did life on Earth begin?’

Continue reading “Meteorites Bathed in Gamma Rays Produce More Amino Acids and Could Have Helped Life get Going on Earth”

Want to Colonize Space? Unleash the Power of Microbes

Researchers at Penn State University are developing a way to use microbes to turn human waste into food on long space voyages. Image: Yuri Gorby, Rensselaer Polytechnic Institute
Microbes play a critical role on Earth. Understanding how they react to space travel is crucial to ensuring astronaut health. Credit: Yuri Gorby, Rensselaer Polytechnic Institute

If space colonization is in our future, we’ll have to use the resources available there. But we won’t be able to bring our established industrial methods and processes from Earth into space. Transporting heavy mining machinery to the Moon, Mars, or anywhere else in space is not feasible. And each of those environments is wildly different from Earth. We’ll need novel approaches to solve all of the problems facing us, and the approaches will have to be sustainable.

Terrestrial microbes are the foundation of Earth’s biosphere, and they could play an outsized role in space colonization.

Continue reading “Want to Colonize Space? Unleash the Power of Microbes”

Should We Build a Nature Reserve on Mars?

There are 8 billion of us now. The UN says when the population peaks around the year 2100, there’ll be 11 billion human souls. Our population growth is colliding with the natural world on a greater scale than ever, and we’re losing between 200 and 2,000 species each year, according to the World Wildlife Federation.

An Engineer from the UK says that one way to mitigate the damage from the clash between humanity and nature is to create more habitat. We could do that by building Terran ecosystem preserves on Mars.

Continue reading “Should We Build a Nature Reserve on Mars?”

Earth’s First Known Mass Extinction Event Starved Life of Oxygen

The Blue Marble image of Earth from Apollo 17. Credit: NASA

650 million years ago, Earth was completely or almost completely frozen, according to the Snowball Earth Hypothesis. As the atmosphere changed and Earth warmed up, it heralded the beginning of the Ediacaran Period. The Ediacaran Period marks the first time multicellular life was widespread on the planet. It predates the more well-known Cambrian Period, when more complex life emerged, diversified, and flourished.

Life during the Ediacaran Period faced a mass extinction, and it was Earth’s first one.

What happened?

Continue reading “Earth’s First Known Mass Extinction Event Starved Life of Oxygen”

Hydrothermal Vents Under the Arctic Ice are Perfect Places to Practice Exploring Europa

This illustration of Europa (foreground), Jupiter (right) and Io (middle) is an artist's concept showing possible oceanic volcanoes under its icy surface. Image Credit: NASA/JPL-Caltech

Someday on Europa, there’ll be a robotic explorer diving beneath its icy surface to find volcanoes. Yes, even though it’s an ice world, Europa shows signs of internal activity. Planetary scientists think volcanic features, similar to hydrothermal vents here on Earth, exist on Europa’s ocean floor. But, how to understand them?

Continue reading “Hydrothermal Vents Under the Arctic Ice are Perfect Places to Practice Exploring Europa”