How Would Rain be Different on an Alien World?

On Titan, Saturn’s largest moon, it rains on a regular basis. As with Earth, these rains are the result of liquid evaporating on the surface, condensing in the skies, and falling back to the surface as precipitation. On Earth, this is known as the hydrological (or water) cycle, which is an indispensable part of our climate. In Titan’s case, the same steps are all there, but it is methane that is being exchanged and not water.

In recent years, scientists have found evidence of similar patterns involving exoplanets, with everything from molten metal to lava rain! This raises the question of just how exotic the rains may be on alien worlds. Recently, a team of researchers from Havard University conducted a study where they researched how rain would differ in a diverse array of extrasolar planetary environments.

Continue reading “How Would Rain be Different on an Alien World?”

Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable

Deep inside planet Earth, there is a liquid outer core and a solid inner core that counter-rotate with each other. This creates the dynamo effect that is responsible for generating Earth’s planetary magnetic field. Also known as a magnetosphere, this field keeps our climate stable by preventing Earth’s atmosphere from being lost to space. So when studying rocky exoplanets, scientists naturally wonder if they too have magnetospheres.

Unfortunately, until we can measure an exoplanet’s magnetic fields, we are forced to infer their existence from the available evidence. This is precisely what researchers at the Sandia National Laboratories did with its Z Pulsed Power Facility (PPF). Along with their partners at the Carnegie Institution for Science, they were able to replicate the gravitational pressures of “Super-Earths” to see if they could generate magnetic fields.

Continue reading “Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable”

The Color of Habitable Worlds

“This is where we live. On a Blue Dot.” said Carl Sagan when the now famous Pale Blue Dot photo was released. Captured February 14, 1990 by the Voyager 1 Space Probe, Pale Blue Dot remains the most distant photograph of the Earth ever taken at 6 billion kilometers. This past February marked the 30th anniversary of Pale Blue Dot which was reprocessed using modern digital photo techniques creating an even more remarkable image.

This updated version of the iconic “Pale Blue Dot” image taken by the Voyager 1 spacecraft uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images. Credit: NASA/JPL-Caltech

Whether Pale Blue Dot, or Blue Marble, our planet is associated with the color blue. As Earth is the only inhabited world we know of, it might stand to reason that other habitable planets in space will also be blue. But it’s a little more complicated than that.

Continue reading “The Color of Habitable Worlds”

The Search for Superhabitable Planets. Worlds Even More Habitable Than Earth

REMINDER: – Universe Today will be hosting an interview with Dr. Dirk Schulze-Makuch, co-author of the research featured in this article, on Thursday October 15th, 2020 at 8:30am PT. Click the video below to watch live or to see the recorded stream afterward

Out Earthing Earth

What planet is this?

c. NASA

If you said Hoth, that’s a good guess. But, it’s actually Earth depicted in one of two known “snowball” states. The entire planet’s surface was locked beneath glacial ice during the Cryogenian Period 650 million years ago and during the Huronian Glaciation 2 – 2.4 billion years ago.

Continue reading “The Search for Superhabitable Planets. Worlds Even More Habitable Than Earth”

Ocean Circulation Might Be the Key to Finding Habitable Exoplanets

Artist's depiction of a waterworld. A new study suggests that Earth is in a minority when it comes to planets, and that most habitable planets may be greater than 90% ocean. Credit: David A. Aguilar (CfA)

We’ve found thousands and thousands of exoplanets now. And spacecraft like TESS will likely find thousands and thousands more of them. But most exoplanets are gassy giants, molten hell-holes, or frozen wastes. How can we find those needles-in-the-haystack habitable worlds that may be out there? How can we narrow our search?

Well, first of all, we need to find water. Oceans, preferably, since that’s where life began on Earth. And according to a new study, those oceans need to circulate in particular ways to support life.

Continue reading “Ocean Circulation Might Be the Key to Finding Habitable Exoplanets”

Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life

We’re waiting patiently for telescopes like the James Webb Space Telescope to see first light, and one of the reasons is its ability to study the atmospheres of exoplanets. The idea is to look for biosignatures: things like oxygen and methane. But a new study says that exoplanets with hydrogen in their atmospheres are a good place to seek out alien life.

Continue reading “Worlds With Hydrogen in Their Atmospheres Could Be the Perfect Place to Search for Life”

NASA’s Perseverance Rover is Going to Jezero Crater, Which is Looking Better and Better as a Place to Search for Evidence of Past Life on Mars

In 2018, NASA decided that the landing site for its Mars 2020 Perseverance rover would be the Jezero Crater. At the time, NASA said the Jezero Crater was one of the “oldest and most scientifically interesting landscapes Mars has to offer.” That assessment hasn’t changed; in fact it’s gotten stronger.

A new research paper says that the Jezero Crater was formed over time periods long enough to promote both habitability, and the preservation of evidence.

Continue reading “NASA’s Perseverance Rover is Going to Jezero Crater, Which is Looking Better and Better as a Place to Search for Evidence of Past Life on Mars”