Dark Oxygen Could Change Our Understanding of Habitability

This image shows a bed of manganese nodules offshore of the Cook Islands. Dark oxygen is produced by manganese nodules on the ocean floor. If the same thing happens on the Solar System's ocean moons, it changes our notion of what worlds could be habitable. Image Credit: By USGS, James Hein - https://www.usgs.gov/media/images/cook-islands-manganese-nodules, CC0, https://commons.wikimedia.org/w/index.php?curid=115692552

The discovery of dark oxygen at an abyssal plain on the ocean floor generated a lot of interest. Could this oxygen source support life in the ocean depths? And if it can, what does that mean for places like Enceladus and Europa?

What does it mean for our notion of habitability?

Continue reading “Dark Oxygen Could Change Our Understanding of Habitability”

How Vegetation Could Impact the Climate of Exoplanets

Image of Earth from 2020, over the South Pacific Ocean from the EPIC camera on the DSCOVR satellite. Many things affect Earth's albedo, including clouds, snow cover, and vegetation. How does exoplanet vegetation affect albedo and climate? Credit: NASA/NOAA

The term ‘habitable zone’ is a broad definition that serves a purpose in our age of exoplanet discovery. But the more we learn about exoplanets, the more we need a more nuanced definition of habitable.

New research shows that vegetation can enlarge the habitable zone on any exoplanets that host plant life.

Continue reading “How Vegetation Could Impact the Climate of Exoplanets”

Ocean Salinity Affects Earth’s Climate. How About on Exoplanets?

Image of Earth from 2020, over the South Pacific Ocean from the EPIC camera on the DSCOVR satellite. Many things affect Earth's albedo, including clouds, snow cover, and vegetation. How does exoplanet vegetation affect albedo and climate? Credit: NASA/NOAA

There’s a link between Earth’s ocean salinity and its climate. Salinity can have a dramatic effect on the climate of any Earth-like planet orbiting a Sun-like star. But what about exoplanets around M-dwarfs?

Continue reading “Ocean Salinity Affects Earth’s Climate. How About on Exoplanets?”

Elliptical Orbits Could be Essential to the Habitability of Rocky Planets

Illustration of Kepler-186f, a recently-discovered, possibly Earthlike exoplanet that could be a host to life. Scientists could use this one or one like it to measure planetary entropy production as a prelude to exploration. (NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)
New research indicates that eccentric orbits may play a role in planet habitability. Credit: NASA Ames, SETI Institute, JPL-Caltech, T. Pyle)

A seismic shift occurred in astronomy during the Scientific Revolution, beginning with 16th-century polymath Copernicus and his proposal that the Earth revolved around the Sun. By the 17th century, famed engineer and astronomer Galileo Galilei refined Copernicus’ heliocentric model using observations made with telescopes he built himself. However, it was not until Kepler’s observations that the planets followed elliptical orbits around the Sun (rather than circular orbits) that astronomical models matched observations of the heavens completely.

As it turns out, this very quirk of orbital mechanics may be essential to the emergence of life on planets like Earth. That was the hypothesis put forth in a recent study by a team of astronomers led by the University of Leeds. According to their work, orbital eccentricity (how much a planet’s orbit deviates from a circle) can influence a planet’s climate response, which could have a profound effect on its potential habitability. These findings could be significant for exoplanet researchers as they continue to search for Earth-like planets that could support life.

Continue reading “Elliptical Orbits Could be Essential to the Habitability of Rocky Planets”

Habitable Planet’s Orbiting Red Dwarf Suns Could at Risk from Far-Ultraviolet Radiation

Artist's depiction of red-dwarf-flare. Image credit: Casey Reed/NASA

The question of whether or not red dwarf stars can support habitable planets has been subject to debate for decades. With the explosion in exoplanet discoveries in the past two decades, the debate has become all the more significant. For starters, M-type (red dwarf) stars are the most common in the Universe, accounting for 75% of the stars in our galaxy. Additionally, exoplanet surveys indicate that red dwarfs are particularly good at forming Earth-like rocky planets that orbit within their circumsolar habitable zones (CHZs).

Unfortunately, a considerable body of research has shown that planets orbiting red dwarf suns would be subject to lots of flare activity – including some so powerful they’re known as “superflares.” In a recent study led by the University of Hawai’i, a team of astrophysicists revealed that red dwarf stars can produce stellar flares with significantly more far-ultraviolet radiation than previously expected. Their findings could have drastic implications for exoplanet studies and the search for extraterrestrial life on nearby rocky planets.

Continue reading “Habitable Planet’s Orbiting Red Dwarf Suns Could at Risk from Far-Ultraviolet Radiation”

Planetary Habitability Depends on its Star’s Magnetic Field

Earth's magnetosphere is the region defined by our planet's magnetic field. Image Credit: NASA
Earth's magnetosphere is the region defined by our planet's magnetic field. Image Credit: NASA

The extrasolar planet census recently passed a major milestone, with 5500 confirmed candidates in 4,243 solar systems. With so many exoplanets available for study, astronomers have learned a great deal about the types of planets that exist in our galaxy and have been rethinking several preconceived notions. These include the notion of “habitability” and whether Earth is the standard by which this should be measured – i.e., could there be “super habitable” exoplanets out there? – and the very concept of the circumsolar habitable zone (CHZ).

Traditionally, astronomers have defined habitable zones based on the type of star and the orbital distance where a planet would be warm enough to maintain liquid water on its surface. But in recent years, other factors have been considered, including the presence of planetary magnetic fields and whether they get enough ultraviolet light. In a recent study, a team from Rice University extended the definition of a CHZ to include a star’s magnetic field. Their findings could have significant implications in the search for life on other planets (aka. astrobiology).

Continue reading “Planetary Habitability Depends on its Star’s Magnetic Field”

The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life

Artist's impression of the range of habitable zones for different types of stars. Credit: NASA/Kepler Mission/Dana Berry

The field of extrasolar planet studies has grown exponentially in the past twenty years. Thanks to missions like Kepler, the Transiting Exoplanet Survey Satellite (TESS), and other dedicated observatories, astronomers have confirmed 5,690 exoplanets in 4,243 star systems. With so many planets and systems available for study, scientists have been forced to reconsider many previously-held notions about planet formation and evolution and what conditions are necessary for life. In the latter case, scientists have been rethinking the concept of the Circumsolar Habitable Zone (CHZ).

By definition, a CHZ is the region around a star where an orbiting planet would be warm enough to maintain liquid water on its surface. As stars evolve with time, their radiance and heat will increase or decrease depending on their mass, altering the boundaries of the CHZ. In a recent study, a team of astronomers from the Italian National Institute of Astrophysics (INAF) considered how the evolution of stars affects their ultraviolet emissions. Since UV light seems important for the emergence of life as we know it, they considered how the evolution of a star’s Ultraviolet Habitable Zone (UHZ) and its CHZ could be intertwined.

Continue reading “The Ultraviolet Habitable Zone Sets a Time Limit on the Formation of Life”

What Deadly Venus Can Tell Us About Life on Other Worlds

Earth and Venus. Why are they so different and what do the differences tell us about rocky exoplanet habitability? Image Credit: NASA

Even though Venus and Earth are so-called sister planets, they’re as different as heaven and hell. Earth is a natural paradise where life has persevered under its azure skies despite multiple mass extinctions. On the other hand, Venus is a blistering planet with clouds of sulphuric acid and atmospheric pressure strong enough to squash a human being.

But the sister thing won’t go away because both worlds are about the same mass and radius and are rocky planets next to one another in the inner Solar System. Why are they so different? What do the differences tell us about our search for life?

Continue reading “What Deadly Venus Can Tell Us About Life on Other Worlds”

Earth’s Long-Term Habitability Relies on Chemical Cycles. How Can We Better Understand Them?

Biogeochemical cycles move matter around Earth between the atmosphere, the oceans, the lithosphere, and living things. Image Credit: By Alexander Davronov - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=106124364

We, and all other complex life, require stability to evolve. Planetary conditions needed to be benign and long-lived for creatures like us and our multicellular brethren to appear and to persist. On Earth, chemical cycling provides much of the needed stability.

Chemical cycling between the land, atmosphere, lifeforms, and oceans is enormously complex and difficult to study. Typically, researchers try to isolate one cycle and study it. However, new research is examining Earth’s chemical cycling more holistically to try to understand how the planet has stayed in the ‘sweet spot’ for so long.

Continue reading “Earth’s Long-Term Habitability Relies on Chemical Cycles. How Can We Better Understand Them?”

The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.

LIFE will have five separate space telescopes that fly in formation and work together to detect biosignatures in exoplanet atmospheres. Image Credit: LIFE, ETH Zurich

We know that there are thousands of exoplanets out there, with many millions more waiting to be discovered. But the vast majority of exoplanets are simply uninhabitable. For the few that may be habitable, we can only determine if they are by examining their atmospheres. LIFE, the Large Interferometer for Exoplanets, can help.

Continue reading “The LIFE Telescope Passed its First Test: It Detected Biosignatures on Earth.”