Just Some of the Planets That TESS Has Found Nearby

Ever since NASA’s Kepler Space Telescope was launched in 2009, there has an explosion in the study of the extrasolar planets. With the retirement of Kepler in 2018, it has fallen to missions like the Transiting Exoplanet Survey Satellite (TESS) to pick up where its predecessor left off. Using observations from TESS, an international team of astronomers recently discovered three exoplanets orbiting a young Sun-like star named TOI 451.

Continue reading “Just Some of the Planets That TESS Has Found Nearby”

What Are Extrasolar Planets?

For countless generations, human beings have looked out at the night sky and wondered if they were alone in the Universe. With the discovery of other planets in our Solar System, the true extent of the Milky Way galaxy, and other galaxies beyond our own, this question has only deepened and become more profound.

And whereas astronomers and scientists have long suspected that other star systems in our galaxy and the Universe had orbiting planets of their own, it has only been within the last few decades that any have been observed. Over time, the methods for detecting these “extrasolar planets” have improved, and the list of those whose existence has been confirmed has grown accordingly (over 4000 and counting!)

Continue reading “What Are Extrasolar Planets?”

A Sunlike Star Found With Four (No, Five!) Exoplanets Orbiting It

In just nine months (October 31st, 2021), NASA’s long-awaited James Webb Space Telescope (JWST) will finally be launched to space. Once operational, this next-generation observatory will use its powerful infrared imaging capabilities to study all kinds of cosmological phenomena. It will also be essential to the characterization of extrasolar planets and their atmospheres to see if any are habitable.

In anticipation of this, astronomers have been designating exoplanets as viable candidates for follow-up studies. Using data from the Transiting Exoplanet Survey Satellite (TESS), an international team led by MIT researchers discovered four new exoplanets orbiting a Sun-like star about 200 light-years from Earth. This system could be an ideal place for James Webb to spot a habitable planet.

Continue reading “A Sunlike Star Found With Four (No, Five!) Exoplanets Orbiting It”

If a Planet Has a Lot of Methane in its Atmosphere, Life is the Most Likely Cause

The ultra-powerful James Webb Space Telescope will launch soon. Once it’s deployed, and in position at the Earth-Sun Lagrange Point 2, it’ll begin work. One of its jobs is to examine the atmospheres of exoplanets and look for biosignatures. It should be simple, right? Just scan the atmosphere until you find oxygen, then close your laptop and head to the pub: Fanfare, confetti, Nobel prize.

Of course, Universe Today readers know it’s more complicated than that. Much more complicated.

In fact, the presence of oxygen is not necessarily reliable. It’s methane that can send a stronger signal indicating the presence of life.

Continue reading “If a Planet Has a Lot of Methane in its Atmosphere, Life is the Most Likely Cause”

What Role do Radioactive Elements Play in a Planet’s Habitability?

To date, astronomers have confirmed the existence of 4,301 extrasolar planets in 3,192 star systems, with another 5,650 candidates awaiting confirmation. In the coming years, next-generation telescopes will allow astronomers to directly observe many of these exoplanets and place tighter constraints on their potential habitability. In time, this could lead to the discovery of life beyond our Solar System!

The only problem is, finding evidence of life requires that we know what to look for. According to a new study by an interdisciplinary team of scientists from the University of California Santa Cruz (UCSC), radioactive elements might play a role in planetary habitability. Future studies of rocky exoplanets, they argue, should therefore look for specific isotopes that indicate the presence of long-lived elements like thorium and uranium.

Continue reading “What Role do Radioactive Elements Play in a Planet’s Habitability?”

Based on Kepler Data, There’s a 95% Chance of an Earth-Like Planet Within 20 Light-Years

In the past few decades, the study of exoplanets has grown by leaps and bounds, with 4296 confirmed discoveries in 3,188 systems and an additional 5,634 candidates awaiting confirmation. Because of this, scientists have been able to get a better idea about the number of potentially-habitable planets that could be out there. A popular target is stars like our own, which are known as G-type yellow dwarfs.

Recently, an international team of scientists (led by researchers from the NASA Ames Research Center) combined data from by the now-defunct Kepler Space Telescope and the European Space Agency’s (ESA) Gaia Observatory. What this revealed is that half of the Sun-like stars in our Universe could have rocky, potentially-habitable planets, the closest of which could be in our cosmic backyard!

Continue reading “Based on Kepler Data, There’s a 95% Chance of an Earth-Like Planet Within 20 Light-Years”

Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!

Located 63.4 light-years from Earth in the constellation Pictor is the young and bright blue star, Beta Pictoris. In 2008, observations conducted from the ESO’s Paranal Observatory in Chile confirmed the presence of an extrasolar planet. This planet was Beta Pictoris b, a Super-Jupiter with an orbital period of up between 6890 and 8890 days (~19 to 24 years) that was confirmed by directly imaging it as it passed behind the star.

In August of 2019, a second planet was detected (another Super-Jupiter) orbiting closer to Beta Pictoris. However, due to its proximity to its parent star, it could only be studied through indirect means (radial velocity measurements). After conducting a reanalysis of data obtained by the VLT, astronomers with the GRAVITY collaboration were able to confirm the existence of Beta Pictoris c through direct imaging.

Continue reading “Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!”

Machine Learning Algorithm Scoops up 50 New Exoplanets

Advances in technology are having a profound impact on astronomy and astrophysics. At one end, we have advanced hardware like adaptive optics, coronographs, and spectrometers that allow for more light to be gathered from the cosmos. At the other end, we have improved software and machine learning algorithms that are allowing for the data to be analyzed and mined for valuable nuggets of information.

One area of research where this is proving to be invaluable is in the hunt for exoplanets and the search for life. At the University of Warwick, technicians recently developed an algorithm that was able to confirm the existence of 50 new exoplanets. When used to sort through archival data, this algorithm was able to sort through a sample of candidates and determine which were actual planets and which were false positives.

Continue reading “Machine Learning Algorithm Scoops up 50 New Exoplanets”

There are Natural Starshades Out There, Which Would Help Astronomers Image Exoplanets

In the past few decades, the study of extrasolar planets has grown by leaps and bounds, with the confirmation of over 4000 exoplanets. With so many planets available for study, the focus of exoplanet-researchers is shifting from discovery to characterization. In the coming years, new technologies and next-generation telescopes will also enable Direct Imaging studies, which will vastly improve our understanding of exoplanet atmospheres.

To facilitate this process, astronomers will rely on costly technologies like coronagraphs and starshades, which block out the light of a star so any planets orbiting it will become more visible. However, according to a new study by an international team of astronomers and cosmologists, eclipsing binary stars could provide all the shading that’s needed to directly image planets orbiting them.

Continue reading “There are Natural Starshades Out There, Which Would Help Astronomers Image Exoplanets”

Do the TRAPPIST-1 Planets Have Atmospheres?

Most exoplanets orbit red dwarf stars because they're the most plentiful stars. This is an artist's illustration of what the TRAPPIST-1 system might look like from a vantage point near planet TRAPPIST-1f (at right). Credits: NASA/JPL-Caltech

In February of 2017, the scientific community rejoiced as NASA announced that a nearby star (TRAPPIST-1) had a system of no less than seven rocky planets! Since that time, astronomers have conducted all kinds of follow-up observations and studies in the hopes of learning more about these exoplanets. In particular, they have been attempting to learn if any of the planets located in the stars Habitable Zone (HZ) could actually be habitable.

Many of these studies have been concerned with whether or not the TRAPPIST-1 planets have sufficient water on their surfaces. But just as important is the question of whether or not any have viable atmospheres. In a recent study that provides an overview of all observations to date on TRAPPIST-1 planets, a team found that depending on the planet in question, they are likely to have good atmospheres, if any at all.

Read more