Sail Past Orion to the Outer Limits of the Milky Way

Several nights ago the chill of interstellar space refrigerated the countryside as temperatures fell well below zero. That didn’t discourage the likes of Orion and his seasonal friends Gemini, Perseus and Auriga. They only seemed to grow brighter as the air grew sharper. 

Wending between these familiar constellations like a river steaming in the cold was the Milky Way. The name has always been slightly confusing as it refers to both the milky band of starlight and the galaxy itself.  Every single star you see at night belongs to our galaxy, a 100,000 light-year-wide flattened disk scintillating with over 400 billion suns.

Our solar system lies in the flat plane of a barred spiral galaxy called the Milky Way. Looking through the plane, the stars pile up to form the Milky Way band. In summerr, we face toward the richer, denser core; in winter we look out toward the edge. Credit: NASA with annotations by the author
Face-on (left) and edge-on views of the Milky Way. Our solar system lies in the flat plane of a barred spiral galaxy called the Milky Way. Looking through the plane, the stars pile up to form the Milky Way band. In summer, we face toward the richer, denser core; in winter we look out toward the edge. Credit: NASA with annotations by the author

Earth, Sun and planets huddle together within the mid-plane of the disk, so that when we look straight into it, the density of stars piles up over thousands of light years to form a thick band across the sky. Since most of the stars are very distant and therefore faint, they can’t be seen individually with the naked eye. They blend together to give the Milky Way a milky or hazy look.

During a snowfall, we can see individual flakes nearby but more distant ones increase in number and blend into a uniform haze. Credit: Bob King
During a snowfall, we can see individual flakes nearby but more distant ones increase in number and blend to make a uniform haze similar to what happens when we look across the flat disk of the Milky Way. Credit: Bob King

In a snowstorm, we easily distinguish individual snowflakes falling in front of our face, but looking into the distance, the flakes blend together to create a white, foggy haze. Replace the snowflakes with stars and you have the Milky Way – with a caveat. If we lived in the center of our galaxy, the sky would be milky with stars in all directions just like that snowstorm, but since the Sun occupies the flat plane, they only appear thick when our line of sight is aimed along the galaxy’s equator. Look above and below the disk and the stars quickly thin out as our gaze pierces through the galaxy’s plane and into intergalactic space.

In this view, the ground is literally gone and we can see all around us in space. From this perspective we can see the full circle of the Milky Way. The blue line represents the galactic equator. Time is around midnight December 1st. Notice that the Sun is located in the same direction as the galaxy's center this month. Stellarium
In this view, the ground – Earth – has been removed from the picture and we can see all around us in space. Now we can see that the Milky Way band describes a full circle in the sky. The blue circle represents the galactic equator. The view shows the sky around midnight in early December. The Sun, at lower right, lies in the same direction as the galaxy’s center this month. Source: Stellarium

If you could float in space some distance from the brilliant ball of Earth, you’d see that the Milky Way band passes above, around and below you like a giant hula-hoop. Back on the ground, we can only see about two-thirds of the band over the course of a year. The other third is below the horizon and visible only from the opposite hemisphere, providing yet another good reason to make that trip to Tahiti or Ayers Rock in Australia.

Few know the winter version of the Milky Way that stands above the southeastern horizon around 10:30-11 p.m. local time on moonless nights in early December. No surprise, given it hardly compares to the brightness of the summertime version. This has much to do with where the Sun is located inside the galaxy, some 30,000 light years away from the center or more than halfway to the edge.

The opposite of the galaxy's center is the anticenter, located near El Nath in the northern horn of Taurus above the constellation Orion. Source: Stellarium
Opposite the galaxy’s center lies the anticenter, located near El Nath in the northern horn of Taurus above the constellation Orion. Source: Stellarium

On late fall and winter nights, our planet faces the galaxy’s outer suburbs and countryside where the stars thin out until giving way to relatively starless intergalactic space. Indeed, the anticenter of the Milky Way lies not far from the star El Nath (Beta Tauri) where Taurus meets Auriga. While the hazy band of the Milky Way is still visible through Auriga and Taurus, it’s thin and anemic compared to summer’s billowy star clouds.

The summertime Milky Way from Scorpius to Cygnus is broader and brighter than the winter version because we look into the direction of its center. Credit: Stephen Bockhold
The summertime Milky Way from Scorpius to Cygnus is broader and brighter than the winter version because we face toward the galactic center at nightfall. Credit: Stephen Bockhold

At nightfall in July and August, we face toward the galaxy’s center where 30,000 light years worth of stars, star clouds and nebulae stack up to fatten the Milky Way into a bright, chunky arch on summer evenings compared to winter’s thin gruel.

The slanting winter Milky Way touches many of the familiar, bright constellations of the December sky. This map shows the sky facing southeast around 11 o'clock local time in early December or 9 p.m. in late December. Source: Stellarium
The slanting winter Milky Way touches many of the familiar, bright constellations of December. This map shows the sky facing southeast around 11 o’clock local time in early December or 9 p.m. in late December. Source: Stellarium

The winter Milky Way starts east of brilliant Sirius and grazes the east side of Orion before ascending into Gemini and Auriga and arching over into the western sky to Cassiopeia’s “W”. Binoculars and telescopes resolve it into individual stars and star clusters and help us appreciate what a truly beautiful and rich place our galactic home is.

Few sights that impress us with the scope and scale of where we live than seeing the Milky Way under a dark sky during the silence of a winter night. Picture Earth and yourself as members of that glowing carpet of  stars, and when you can’t take the cold anymore, enjoy the delicious pleasure of stepping inside to unwrap and warm up. You’ve been on a long journey.

Here’s Your Sign: Are You an Ophiuchian?

It happens to all lovers of astronomy sooner or later.

I once had a friend who was excited about an upcoming conjunction of Saturn and Venus. They were passing closer than the apparent diameter of the Full Moon in the dawn sky, and you could fit ‘em both in the same telescopic field of view. I invited said friend to stop by at 5 AM the next morning to check this out. I was excited to see this conjunction as well, but not for the same reasons.

Said friend was into astrology, and I’m sure that the conjunction held a deep significance in their world view. Sure, I could have easily told them that ‘astrology is bunk,’ and the skies care not for our terrestrial woes… or I could carefully help guide this ‘at risk friend’ towards the true wonders of the cosmos if they were willing to listen.

We bring this up because this weekend, the Sun enters the constellation Ophiuchus, one of 13 modern constellations that it can appear in from our Earthly vantage point.

If you’re born from November 30th to December 18th, you could consider yourself an “Ophiuchian,” or being born under the sign of Ophiuchus the Serpent Bearer. But I’ll leave it up to you to decide what they might be like.

Photo by author.
Seen at the Albany Park Zoo: Herpetology, or a modern day “serpent bearer?” Photo by author.

You might remember how the “controversy” of the 13th sign made its news rounds a few years back. Hey, it was cool to at least see an obscure and hard to pronounce constellation trending on Twitter. Of course, this wasn’t news to space enthusiasts, and to modern astronomers, a ‘house’ is merely where you live, and a ‘sign’ is what you follow to get there.

The modern 88 constellations we use were formalized by the International Astronomical Union in 1922. Like political boundaries, they’re imaginary constructs we use to organize reality. Star patterns slowly change with time due to our solar system’s motion — and that of neighboring stars —about the galactic center.

Astrologers will, of course, counter that their craft follows a tropical scheme versus a sidereal cosmology. In the tropical system, ecliptic longitude 0 starts from the equinoctial point marking the beginning of spring in the northern hemisphere, and the zodiac is demarcated by 12 ‘houses’ 30 degrees on a side.

This neatly ignores the reality of our friend, the precession of the equinoxes. The Earth’s poles do a slow wobble like a top, taking about 26,000 years to make one turn. This means that in the sidereal scheme of things, our vantage point of the Sun’s position along the zodiac against the background stars if reference to our Gregorian calendar is slowly changing: live out a 72 year lifespan, and the constellations along the zodiac with respect to the Sun will have shifted about one degree due to precession.

Credit: Starry Night Education Software.
Our changing pole star. Credit: Starry Night Education Software.

Likewise, the direction of the North and South Pole is changing as well. Though Polaris makes a good pole star now, it’ll become increasingly less so as our north rotational pole begins to pull away from it after 2100 A.D. To the ancient Egyptians, Thuban (Alpha Draconis) was the pole star.

Credit: Wikimedia Commons
Precession over time. Credit: Tfr000 under Wikimedia Creative Commons 3.0 license.

Astrology and astronomy also have an intimate and hoary history, as many astronomers up until the time of Kepler financed their astronomical studies by casting royal horoscopes. And we still use terms such as appulse, conjunction and occultation, which have roots in astrology.

But the science of astronomy has matured beyond considering whether Mercury in retrograde has any connection with earthly woes. Perhaps you feel that you’re unlucky in love and have a vast untapped potential… sure, me too. We all do, and that just speaks to the universal state of the human condition. Astrology was an early attempt by humanity to find a coherent narrative, a place in the cosmos.

But the rise of the Ophiuchians isn’t nigh. Astrology relented to astronomy because of the latter’s true predictive power. “Look here, in the sky,” said mathematician Urbain Le Verrier, “and you’ll spy a new planet tugging on Uranus,” and blam, Neptune was discovered. If the planets had any true influence on us, why didn’t astrologers manage to predict the same?

Combating woo such as astrology is never simple. In the internet era, we often find tribes of the like-minded folks polarized around electronic camp fires. For example, writing ‘astrology is woo’ for an esteemed audience of science-minded readers such as Universe Today will no doubt find a largely agreeable reception. We have on occasion, however, written the same for a general audience to a much more hostile reception. Often, it’s just a matter of being that lone but patient voice of rationalism in the woods that ultimately sinks in.

Photo by author.
Zodiacal artwork seen at the Yerkes observatory. Photo by author.

So, what’s the harm? Folks can believe whatever they want, and astrology’s no different, right? Well, the harm comes when people base life decisions on astrology. The harm comes when world leaders make critical decisions after consulting astrologers. Remember, Nancy and President Ronald Reagan conferred with astrologers for world affairs. It’s an irony of the modern age that, while writing a take down on astrology, there will likely be ads promoting astrology running right next to this very page. And while professional astronomers spend years in grad school, you can get a “PhD in Astrology” of dubious value online for a pittance. And nearly every general news site has a astrology page. Think of the space missions that could be launched if we threw as much money at exploration as we do at astrology as a society. Or perhaps astronomers should revert back to the dark side and resume casting horoscopes once again?

But to quote Spiderman, “with great power comes great responsibility,” and we promise to only use our astronomical powers for good.

What astronomers want you to know is that we’re not separate from the universe above us, and that the cosmos does indeed influence our everyday lives. And we’re not talking about finding your car keys or selling your house. We’re thinking big. The Sun energizes and drives the drama of life on Earth. The atoms that make you the unique individual that you are were forged in the hearts of stars. The ice that chills our drink may well have been delivered here via comet. And speaking of which, a comet headed our way could spell a very bad day for the Earth.

P_20130928_083416
Don’t leave home without one… a travelling “pocket planetarium” circa 16th century seen at the Tampa Bay History Center. Photo by author.

All of these are real things that astronomy tells us about our place in the cosmos, whether you’re an Ophiuchian or a Capricorn. To paraphrase Shakespeare, the heavens may (seem to) blaze forth for the death of princes, but the fault lies not in the heavens, but ourselves. Don’t forget that, as James Randi says, “you’re a member of a proud species,” one loves to look skyward, and ultimately knows when to discard fantasy for reality.

 

How to See 209P/LINEAR, the Comet Brewing Up Saturday’s Surprise Meteor Shower

As we anxiously await the arrival of a potentially rich new meteor shower this weekend, its parent comet, 209P/LINEAR, draws ever closer and brighter. Today it shines feebly at around magnitude +13.7 yet possesses a classic form with bright head and tail. It’s rapidly approaching Earth, picking up speed every night and hopefully will be bright enough to see in your telescope very soon. 

As it approaches Earth in the coming nights, comet 209P/LINEAR will appear to move quickly across the sky, traveling from Leo Minor to southern Hydra in little over a week. All maps created with Chris Marriott's SkyMap software
As it approaches Earth in the coming nights, comet 209P/LINEAR will move quickly across the sky, traveling from Ursa Major to southern Hydra in just 10 days. When closest on May 28-29, the comet will cover 10 degrees per day or just shy of 1/2 degree per hour. All maps created with Chris Marriott’s SkyMap software

The comet was discovered in Feb. 2004 by the Lincoln Laboratory Near-Earth Asteroid Research (LINEAR) automated sky survey. Given its stellar appearance at the time of discovery it was first thought to be an asteroid, but photos taken the following month photos by Rob McNaught (Siding Spring Observatory, Australia) revealed a narrow tail. Unlike long period comets Hale-Bopp and the late Comet ISON that swing around the sun once every few thousand years or few million years, this one’s a frequent visitor, dropping by every 5.09 years.

This detailed map shows the comet's path from Leo Minor across the backside of the Sickle of Leo May 23-26. Hopefully it will be bright enough then to spot in an 8-inch or larger telescope. Click to enlarge and then print out for use at the telescope.
This detailed map shows the comet’s path from Leo Minor across the backside of the Sickle of Leo May 23-26. Hopefully it will be bright enough then to spot in an 8-inch or larger telescope. On May 25, it passes close to the colorful double star Gamma Leonis and a pair of NGC galaxies. Stars plotted to magnitude +9. Click to enlarge and then print out for use at the telescope.

209P/LINEAR belongs to the Jupiter family of comets, a group of comets with periods of less than 20 years whose orbits are controlled by Jupiter. When closest at perihelion, 209P/LINEAR coasts some 90 million miles from the sun; the far end of its orbit crosses that of Jupiter. Comets that ply the gravitational domain of the solar system’s largest planet occasionally get their orbits realigned. In 2012, during a relatively close pass of that planet, Jupiter perturbed 209P’s orbit, bringing the comet and its debris trails to within 280,000 miles (450,000 km) of Earth’s orbit, close enough to spark the meteor shower predicted for this Friday night/Saturday morning May 23-24.

Track of the comet through from May 27-29 through the dim constellation Sextans south of Leo.
Track of the comet from May 27-29 through Sextans to the Hydra-Crater border with positions shown every 3 hours. Times are CDT. Click to enlarge.

This time around the sun, the comet itself will fly just 5.15 million miles (21 times the distance to the moon) from Earth around 3 a.m. CDT (8 hours UT) May 29 a little more than 3 weeks after perihelion, making it the 9th closest comet encounter ever observed. Given , you’d think 209P would become a bright object, perhaps even visible with the naked eye, but predictions call for it to reach about magnitude +11 at best. That means you’ll need an 8-inch telescope and dark sky to see it well. Either the comet’s very small or producing dust at a declining rate or both. Research published by Quanzhi Ye and Paul A. Wiegert describes the comet’s current dust production as low, a sign that 209P could be transitioning to a dormant comet or asteroid.

Light curve for comet 209P/LINEAR predicts a maximum magnitude of around 11. Click for more information. Credit: Seiichi Yoshida
Light curve for comet 209P/LINEAR forecasts a maximum magnitude of around 11. Dates are shown along the bottom and magnitude scale along the side. Click for additional information. Credit: Seiichi Yoshida

Fortunately, the moon’s out of the way this week and next when 209P/LINEAR is closest and brightest. Since we enjoy comets in part because of their unpredictability, maybe a few surprises will be in the offing including a brighter than expected appearance. The maps will help you track down 209P during the best part of its apparition. I deliberately chose ‘black stars on a white background’ for clarity in use at the telescope. It also saves on printer ink!

A brand new meteor shower shooting 100 and potentially as many as 400 meteors an hour may radiate from the dim constellation Camelopardalis below the North Star Saturday morning May 24. This map shows the sky facing north around 2 a.m. from the central U.S. around 2 a.m. Saturday.  Stellarium
A brand new meteor shower shooting 100 and potentially as many as 400 meteors an hour may radiate from the dim constellation Camelopardalis below the North Star Saturday morning May 24. Each is crumb or pebble of debris lost by 209P/LINEAR during earlier cycles around the sun. This map shows the sky facing north around 2 a.m. from the Saturday May 24 from the central U.S. Stellarium

We’re grateful for the dust 209P/LINEAR carelessly lost during its many passes in the 19th and early 20th centuries. Earth is expected to pass through multiple filaments of debris overnight Friday May 23-24 with the peak of at least 100 meteors per hour – about as good as a typical Perseid or Geminid shower – occurring around 2 a.m. CDT (7 hours UT).

If it’s cloudy or you’re not in the sweet zone for viewing either the comet or the potential shower, astrophysicist Gianluca Masi will offer a live feed of the comet at the Virtual Telescope Project website scheduled to begin at 3 p.m. CDT (8 p.m. Greenwich Time) May 22. A second meteor shower live feed will start at 12:30 a.m. CDT (5:30 a.m. Greenwich Time) Friday night/Saturday morning May 23-24.

SLOOH will also cover 209P/LINEAR live on the Web with telescopes on the Canary Islands starting at 5 p.m. CDT (6 p.m. EDT, 4 p.m. MDT and 3 p.m. PDT) May 23.  Live meteor shower coverage featuring astronomer Bob Berman of Astronomy Magazine begins at 10 p.m. CDT. Viewers can ask questions by using hashtag #slooh.

A very exciting weekend lies ahead!

Star Trail Photo Hints at Hidden Polestars

A week ago I made a 45-minute time exposure of the southern sky featuring the planet Mars. As the Earth rotated on its axis, the stars trailed across the sky. But take a closer look at the photo and you’ll see something interesting going on. 

The trails across the diagonal (upper right to lower left) are straight, those in the top third arc upward or north while those in the bottom third curve downward or south.

I've drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth's equator see the celestial equator pass directly overhead. From mid-northern latitudes, it's about halfway up in the southern sky. From mid-southern latitudes, it's halfway up in the northern sky. Credit: Bob King
I’ve drawn part of the imaginary great circle in the sky called the celestial equator. Residents of cities on or near the Earth’s equator see the celestial equator pass directly overhead. From mid-northern latitudes, it’s about halfway up in the southern sky. From mid-southern latitudes, it’s halfway up in the northern sky. Credit: Bob King

I suspect you know what’s happening here. Mars happens to lie near the celestial equator, an extension of Earth’s equator into the sky. The celestial equator traces a great circle around the celestial sphere much as the equator completely encircles the Earth.

On Earth, cities north of the equator are located in the northern hemisphere, south of the equator in the southern hemisphere. The same is true of the stars. Depending on their location with respect to the celestial equator they belong either to the northern or southern halves of the sky.

Earth's axis points north to Polaris, the northern hemisphere's North Star, and south to dim Sigma Octantis. Illustration: Bob King
Earth’s axis points north to Polaris, the northern hemisphere’s North Star, and south to dim Sigma Octantis. Illustration: Bob King

Next, let’s take a look at Earth’s axis and where each end points. If you live in the northern hemisphere, you know that the axis points north to the North Star or Polaris. As the Earth spins, Polaris appears fixed in the north while all the stars in the northern half of the sky describe a circle around it every 24 hours (one Earth spin). The closer a star is to Polaris, the tighter the circle it describes.

Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King
Time exposure centered on Polaris, the North Star. Notice that the closer stars are to Polaris, the smaller the circles they describe. Stars at the edge of the frame make much larger circles. Credit: Bob King

Likewise, from the southern hemisphere, all the southern stars circle about the south pole star, an obscure star named Sigma in the constellation of Octans, a type of navigational instrument. Again, as with Polaris, the closer a star lies to Sigma Octantis, the smaller its circle.

Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz
Stars trail around the dim southern pole star Sigma Octantis as seen from the southern hemisphere. The two smudges are the Large and Small Magellanic Clouds, companion galaxies of the Milky Way. Credit: Ted Dobosz

But what about stars on or near the celestial equator? These gems are the maximum distance of 90 degrees from either pole star just as Earth’s equator is 90 degrees from the north and south poles. They “tread the line” between both hemispheres and make circles so wide they appear not as arcs – as the other stars do in the photo – but as straight lines. And that’s why stars appear to be heading in three separate directions in the photograph.

A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium
A view of the entire sky as seen from Quito, Ecuador on the equator this evening. The celestial equator crosses directly overhead while each pole star lies 90 degrees away on opposite horizons. Stellarium

In so many ways, we see aspects of our own planet in the stars above.

Asteroid 2013 UQ4 Suddenly Becomes a Dark Comet with a Bright Future

On October 23, 2013,  astronomers with the Catalina Sky Survey picked up a very faint asteroid with an unusual orbit more like a that of a comet than an asteroid. At the time 2013 UQ4 was little  more than a stellar point with no evidence of a hazy coma or tail that would tag it as a comet. But when it recently reappeared in the morning sky after a late January conjunction with the sun, amateur astronomers got a surprise.

On May 7, Comet ISON co-discoverer Artyom Novichonok, and Taras Prystavski used a remote telescope located in Siding Spring, Australia to take photos of 2013 UQ4 shortly before dawn in the constellation Cetus. Surprise, surprise. The asteroid had grown a little fuzz, making the move to comethood. No longer a starlike object, 2013 UQ4 now displays a substantial coma or atmosphere about 1.5 arc minutes across with a more compact inner coma measuring 25 arc seconds in diameter. No tail is visible yet, and while its overall magnitude of +13.5 won’t make you break out the bottle of champagne, it’s still bright enough to see in a 12-inch telescope under dark skies.

Wide field map showing the comet's movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach peak brightness of 7th magnitude in early July. Created with Chris Marriott's SkyMap program
Wide field map showing the comet’s movement from Cetus through Pisces and into Cepheus in July when it becomes circumpolar for skywatchers at mid-northern latitudes. It should reach a peak brightness of 7th magnitude in early July. Click to enlarge. Created with Chris Marriott’s SkyMap program

The best is yet to come. Assuming the now renamed C/2013 UQ4 continues to spout dust and water vapor, it should brighten to magnitude +11 by month’s end as it moves northward across Pisces and into a dark morning sky. Perihelion occurs on June 5 with the comet reaching magnitude +8-9 by month’s end. Peak brightness of 7th magnitude is expected during its close approach of Earth on July 10 at 29 million miles (46.7 million km).

This should be a great summer comet, plainly visible in binoculars from a dark sky as it speeds across Cepheus and Draco during convenient viewing hours at the rate of some 7 degrees per night! That’s 1/3 of a degree per hour or fast enough to see movement through a telescope in a matter of minutes when the comet is nearest Earth.

Lightcurve showing the date on the bottom and magnitude along the vertical. Work by Artyom Novichonok and Taras Prystavski
Light curve showing C/2013 UQ4 brightening to a sharp peak in early July and then quickly fading. Created by Artyom Novichonok and Taras Prystavski

Come August, C/2013 UQ4 rapidly fades to magnitude +10 and then goes the way of so many comets – a return to a more sedentary lifestyle in the cold bones of deep space.

C/2013 UQ4 belongs to a special category of asteroids called damocloids (named for asteroid 5335 Damocles) that have orbits resembling the Halley-family comets with long periods, fairly steep inclinations and highly eccentric orbits (elongated shapes). Some, like Comet Halley itself, even travel backwards as they orbit the sun, an orbit astronomers describe as ‘retrograde’.

Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA
Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA

Damocloids are thought to be comets that have lost all their fizz. With their volatile ices spent from previous trips around the sun, they stop growing comas and tails and appear identical to asteroids. Occasionally, one comes back to life. It’s happened in at least four other cases and appears to be happening with C/2013 UQ4 as well.

Studies of the comet/asteroid’s light indicate that UQ4 is a very dark but rather large object some 4-9 miles (7-15 km) across. It’s estimated that C/2013 UQ4 takes at least 500 years to make one spin around the sun. Count yourself lucky this damocloid decided to spend its summer vacation in Earth’s skies. We’ll have more detailed maps and updates as the comet becomes more easily visible next month. Stay tuned.

The Big Dipper Like You’ve Never Seen It Before!

[/caption]

All right, it may look just like any other picture you’ve ever seen of the Big Dipper. Maybe even a little less impressive, in fact. But, unlike any other picture, this one was taken from 290 million km away by NASA’s Juno spacecraft en route to Jupiter, part of a test of its Junocam instrument!  Now that’s something new concerning a very old lineup of stars!

“I can recall as a kid making an imaginary line from the two stars that make up the right side of the Big Dipper’s bowl and extending it upward to find the North Star,” said Scott Bolton, principal investigator of NASA’s Juno mission. “Now, the Big Dipper is helping me make sure the camera aboard Juno is ready to do its job.”

Diagram of the Juno spacecraft (NASA/JPL)

The image is a section of a larger series of scans acquired by Junocam between 20:23 and 20:56 UTC (3:13 to 3:16 PM EST) on March 14, 2012. Still nowhere near Jupiter, the purpose of the imaging exercise was to make sure that Junocam doesn’t create any electromagnetic interference that could disrupt Juno’s other science instruments.

In addition, it allowed the Junocam team at Malin Space Science Systems in San Diego, CA to test the instrument’s Time-Delay Integration (TDI) mode, which allows image stabilization while the spacecraft is in motion.

Because Juno is rotating at about 1 RPM, TDI is crucial to obtaining focused images. The images that make up the full-size series of scans were taken with an exposure time of 0.5 seconds, and yet the stars (brightened above by the imaging team) are still reasonably sharp… which is exactly what the Junocam team was hoping for.

“An amateur astrophotographer wouldn’t be very impressed by these images, but they show that Junocam is correctly aligned and working just as we expected”, said Mike Caplinger, Junocam systems engineer.

As well as the Big Dipper, Junocam also captured other stars and asterisms, such as Vega, Canopus, Regulus and the “False Cross”. (Portions of the imaging swaths were also washed out by sunlight but this was anticipated by the team.)

These images will be used to further calibrate Junocam for operation in the low-light environment around Jupiter, once Juno arrives in July 2016.

Read more about the Junocam test on the MSSS news page here.

As of May 10, Juno was approximately 251 million miles (404 million kilometers) from Earth. Juno has now traveled 380 million miles (612 million kilometers) since its launch on August 5, 2011 and is currently traveling at a velocity of 38,300 miles (61,600 kilometers) per hour relative to the Sun.

Watch a video of the Juno launch here, taken by yours truly from the press site at Kennedy Space Center!

China Unveils High Resolution Global Moon Map

[/caption]

Chinese scientists have assembled the highest resolution map ever created of the entire Moon and unveiled a series of global Moon images on Monday, Feb. 6.

The composite Lunar maps were created from over 700 individual images captured by China’s Chang’e-2 spacecraft and released by the country’s State Administration of Science, Technology and Industry for National Defence (SASTIND), according to reports from the state run Xinhua and CCTV new agencies.

“The map and images are the highest-resolution photos of the entirety of the Moon’s surface to be published thus far,” said Liu Dongkui, deputy chief commander of China’s lunar probe project, reports Xinhua.

Of course there are much higher resolution photos of numerous individual locations on the Moon taken from orbit by the spacecraft of other countries and from the surface by NASA’s Apollo lunar landing astronauts as well as unmanned Russian & American lunar landers and rovers.

China unveils High Resolution Global Moon map from Chang'e-2 Lunar Orbiter
Credit: China Space Program

Chang’e-2 is China’s second lunar probe and achieved orbit around our nearest neighbor in space in October 2010. It was launched on Oct. 1, 2010 and is named after a legendary Chinese moon goddess.

The images were snapped between October 2010 and May 2011 using a charge-coupled device (CCD) stereo camera as the spacecraft flew overhead in a highly elliptical orbit ranging from 15 km to 100 km altitude.

The Chang’e-2 maps have a resolution of 7 meters, which is 17 times greater than from China’s first lunar orbiter; Chang’e-1, launched in 2007.

Global Lunar Map from China’s Chang'e-2 Lunar Orbiter. Credit: China Space Program

In fact the maps are detailed enough that Chinese scientists were able to detect traces of the Apollo landers, said Yan Jun, chief application scientist for China’s lunar exploration project.


Chang’e-2 also captured high resolution photos of the “Sinus Iridum”area , or Bay of Rainbows, where China may land their next Moon mission. The camera had the ability to resolve features as small as 1 meter across at the lowest altitude.

The satellite left lunar orbit in June 2011 and is currently orbiting the moon’s second Lagrange Point (L2), located more than 1.5 million km away from Earth.

Chinese space program officials hope for a 2013 liftoff of the Chang’e-3 lunar rover, on what would be China’s first ever landing on another celestial body. China’s next step beyond the rover may be to attempt a lunar sample return mission in 2017.

Demonstrating the ability to successfully conduct an unmanned lunar landing is a key milestone that must be achieved before China can land astronauts on the Moon, perhaps within the next decade.

NASA’s twin GRAIL spacecraft recently achieved Lunar orbit over the New Year’s weekend. The duo of probes were just renamed as “Ebb and Flow” – the winning entries in an essay naming contest submitted by 4th Grade US students from Bozeman, Montana.

At this time NASA does not have the funding or an approved robotic lunar landing mission, due to severe budget cuts.And even worse NASA cuts will be announced shortly !

Russia hopes to send the Lunar Glob spacecraft to land on the Moon around 2015.

Since the United States has unilaterally scuttled its plans to return American astronauts to the Moon’s surface, it’s very possible that the next flag planted on the Moon by humans will be Chinese.

Night Sky Guide: January 2012

[/caption]

January brings us striking views of the night skies! You’ll be able to see well known constellations during the long hours of darkness in the Northern hemisphere, with crisp cold skies. This is an ideal time to get out and look at the wonders of the night sky as there is so much to see for the beginner and seasoned astronomer alike.

You will only need your eyes to see most of the things in this simple guide, but some objects are best seen through binoculars or a small telescope.

So what sights are there in the January night sky and when and where can we see them?

Meteor Showers

Quadrantid Meteor Credit: nasa.gov

As soon as the month starts we receive a welcome treat in the form of the Quadrantid meteor shower on the evening of the 3rd/ morning of the 4th of January.

The Quadrantids can be quite an impressive shower with rates (ZHR) of up to 120 meteors per hour at the showers peak (under perfect conditions) and can sometimes produce rates of up to 200 meteors per hour. The peak is quite narrow lasting only a few hours, with activity either side of the peak being quite weak.

Due to a waxing gibbous moon, the best time to look is after midnight and through the early hours when the moon sets in time for us to see the peak which is 07:20 UT.

The radiant of the Quadrantids (where the meteors radiate from) is in the constellation of Boötes, however many people are mislead in thinking they need to look at the radiant to see the meteors – this is not true. Meteors will come from the radiant, but will appear anywhere in the whole sky at random. You can trace the shooting stars path back to the radiant to confirm if it is a meteor from the meteor shower.

For more information on how to observe and enjoy the Quadrantid meteor shower, visit meteorwatch.org

Planets

Mercury is low down in the southeast before sunrise in the first week of January.

Venus will be shining brightly in the southwest until May and will pass within 1° of Neptune the furthest planet on the 12th and 13th of January. You can see this through binoculars or a small telescope. On the 26th Venus and the Moon can be seen together after sunset.

Venus

On the 5th of January, Earth will be at “Perihelion” its closest point to the Sun.

Mars brightens slightly to -0.5 during January and can be found in the tail of Leo; it can be easily spotted with the naked eye. The red Planet is close to the Moon on the night of the 13th/ 14th January.

Mars

On January 2nd Jupiter and the Moon will be very close to each other with a separation of only 5° with Jupiter just below the Moon. Jupiter will continue to be one of the brightest objects in the sky this month.
Jupiter

Saturn now lies in the constellation of Virgo and follows after just after Mars in Leo.
Saturn

Uranus is just barely visible to the naked eye in the constellation of Pisces and can be easily spotted in binoculars or small telescopes throughout the month. The Moon will pass very close to Uranus on the 27th and will be just 5.5° to the left of the planet.
Uranus

Moon phases

  • First Quarter – 1st and 31st January
  • Full Moon – 9th January
  • Last Quarter – 16th January
  • New Moon – 23rd January

Constellations

Credit: Adrian West

In January the most dominant and one of the best known constellations proudly sits in the south of the sky – Orion the hunter.

Easily distinguishable as a torso of a man with a belt of three stars, a sword, club and shield, Orion acts as the centre piece of the surrounding winter constellations. Orion is viewed upside down in the Northern sky as seen from the Southern hemisphere.

Orion contains some exciting objects and its most famous are the Great Nebula in Orion(M42), which makes up the sword and is easily seen in binoculars or a telescope and bright Betelgeuse, Orion’s bright alpha star (α Orionis). Betelgeuse is a red supergiant many times larger than our Sun; it would engulf everything in our solar system out to the orbit of Jupiter, if the two stars swapped places. Betelgeuse will eventually end its life in a Supernova explosion and some people believe that it may have already exploded and the light hasn’t reached us yet. It would make for a fantastic sight!

The Great Orion Nebula by Patrick Cullis
The Great Orion Nebula. Image Credit: Patrick Cullis

If you draw an imaginary line through the three belt stars of Orion and keep going up and to the right, you will come to a bright orange coloured star – Aldebaran (α Tauri) in the constellation of Taurus.
Pleiades Cluster/ Seven Sisters

Taurus depicts a head of a bull with Aldebaran as its eye with a V shape that creates long horns starting from what we call the Hyades cluster, a V shaped open cluster of stars. If you continue to draw a line through the belt stars of Orion, through Aldebaran and keep going, you will eventually get to one of the gems in Taurus – The Pleiades cluster or Seven Sisters (M45) a stunning cluster of blue and extremely luminous stars and from our vantage point on Earth, the most recognisable cluster with the naked eye. A great object to scan with binoculars. A great object to hunt for with a small telescope is the Crab Nebula (M1) near the end of the lower horn of Taurus.
The Crab Nebula
The Crab Nebula

If you go back to our imaginary line drawn through the belt stars of Orion and draw it in the other direction, to left and below, you will come to the very bright star Sirius (α CMa) – The Dog Star in Canis Major. Sirius is the brightest star in the sky and is only 8.6 light years away, it is the closest star visible to the naked eye after the Sun.

Sirius along with Betelgeuse and Procyon (α CMi) in Canis Minor, form an asterism known as the Winter Triangle.

Directly above Orion and the Winter Triangle are the constellations of Gemini (The Twins), with the two bright stars of Castor and Pollux marking their heads and Auriga the charioteer, with its bright alpha star Capella (α Aur). Auriga is host to M36, M37 and M38 which are globular clusters and easily seen through binoculars or small telescope and Gemini plays host to M35.

M37

Only a few of the objects available to see have been mentioned, so get yourself a good map, Planisphere or star atlas and see what other objects you can track down!

Revolutionary Air-Launched Commercial Rocket to Orbit Announced by Microsoft Billionaire Paul Allen

[/caption]

A mega quartet of luminaries led by Microsoft co-founder Paul G. Allen and legendary aerospace designer Burt Rutan have joined forces to create a revolutionary new approach to space travel. This new privately funded venture entails the development of a mammoth air-launched space transportation system that aims to dramatically cut the high costs and risks of launching both cargo and human crews to low Earth orbit.

Allen and Rutan are teaming up with Elon Musk, founder of Space Exploration Technologies Corp, or SpaceX, and Michael Griffin, former NASA Administrator, to build the world’s largest aircraft ever flown and use it as a platform to loft a multi-stage SpaceX rocket that will deliver a payload of some 13,500 pounds into earth orbit, about the same class as a Delta II.

Allen and Rutan hope to build upon the spaceflight revolution that they pioneered with the suborbital SpaceShipOne in 2004, which was the first privately funded spaceship to reach the edge of space, and now take the critical next step and actually vault all the way to orbit.


Video Caption: Stratolaunch Systems is pioneering innovative solutions to revolutionize space transportation to orbit.

To accomplish this innovative leap, Allen and Rutan, announced the formation of a new company, funded by Allen, called Stratolaunch Systems at a press briefing today, Dec. 13, held in Seattle, WA. Allen is a billionaire and philanthropist who has funded a host of projects to advance science,

“Our national aspirations for space exploration have been receding,” Allen lamented at the start of the briefing. “This year saw the end of NASA’s space shuttle program. Constellation, which would have taken us back to the moon, has been mothballed as well. For the first time since John Glenn, America cannot fly its own astronauts into space.”

“With government funded spaceflight diminishing, there’s a much expanded opportunity for privately funded efforts.”

Rutan said that Stratolaunch will build a 1.2 million pound carrier aircraft sporting a wingspan of 385 feet – longer than a football field – and which will be powered by six 747 engines on takeoff. The carrier will be a twin fuselage vehicle, like the WhiteKnight developed by Rutan to launch SpaceShipOne.

Air launch of SpaceX rocket to orbit

The 120 foot long SpaceX rocket, weighing up to 490,000 pounds, will be slung in between and dropped at an altitude of about 30,000 feet for the remaining ascent to orbit.

SpaceX will construct a shorter, less powerful version of the firms existing Falcon 9 rocket, which may be either a Falcon 4 or Falcon 5 depending on specifications.

The new launch system will operate from a large airport or spaceport like the Kennedy Space Center, require a 12,000 feet long runway for takeoff and landing and be capable of flying up to 1,300 nautical miles to the payload’s launch point. Crews aboard the huge carrier aircraft will also conduct the countdown and firing of the booster and will monitor payload blasting to orbit.

“I have long dreamed about taking the next big step in private space flight after the success of SpaceShipOne – to offer a flexible, orbital space delivery system,” Allen said. “We are at the dawn of radical change in the space launch industry. Stratolaunch Systems is pioneering an innovative solution that will revolutionize space travel.”

The goal of Stratolaunch is to “bring airport-like operations to the launch of commercial and government payloads and, eventually, human missions,” according to a company statement.

Plans call for a first orbital flight within five years by around 2016. Test flights could begin around 2015.

“We believe this technology has the potential to someday make spaceflight routine by removing many of the constraints associated with ground launched rockets,” said Mike Griffin. “Our system will also provide the flexibility to launch from a large variety of locations.”

Mike Griffin added that the venture is aiming for the small to medium class payload market similar to what has been served by the venerable Delta II rocket, which is now being retired after decades of service.

“NASA’s science satellites could also be lofted by Stratolaunch.”

“At some point this vehicle could loft a crew of say six people,” Griffin stated.

“This is an exciting day,” concluded Allen.

“Stratolaunch will keep America at the forefront of space exploration and give tomorrow’s children something to search for in the night sky and dream about. Work has already started on our project at the Mojave Spaceport.”

SpaceX Dragon cargo spaceship propels commercial and science payloads to orbit following air-launch from gigantic carrier aircraft. Credit: Stratolaunch Systems

Orion Spacecraft to Launch in 2014

[/caption]
CAPE CANAVERAL, Fla – NASA has announced its intention to launch an unmanned flight of the Orion Spacecraft atop a United Launch Alliance (ULA) Delta IV Heavy launch vehicle – by 2014. This flight test will be added to the contract that the space agency has with aerospace firm Lockheed Martin. The Orion Multi-Purpose Crew Vehicle or Orion MPCV as it is more commonly known – will test out systems that will be employed on the Space Launch System (SLS). If successful, this will allow astronauts to travel beyond low-Earth-orbit (LEO) for the first time in over four decades.

“This flight test will provide invaluable data to support the deep space exploration missions this nation is embarking upon,” said NASA Associate Administrator for Communications David Weaver.

The flight has been dubbed Exploration Flight Test or EFT-1 and will be comprised of two high-apogee orbits that will conclude with a high-energy reentry into the Earth’s atmosphere. Like the Mercury, Gemini and Apollo capsules before it, the Orion MPCV will conduct a water landing.

The test mission will lift off from Cape Canaveral Air Force Station located in Florida. It is designed to provide the space agency with vital flight data regarding how the vehicle handles re-entry and other performance issues.

The test flight will be comprised of two high-apogee orbits followed by a splash down. This flight will provide NASA with crucial information that could potentially lead to changes in the Orion spacecraft's design. Image Credit: NASA

“The entry part of the test will produce data needed to develop a spacecraft capable of surviving speeds greater than 20,000 mph and safely return astronauts from beyond Earth orbit,” said Associate Administrator for Human Exploration and Operations William
Gerstenmaier. “This test is very important to the detailed design process in terms of the data we expect to receive.”

Presumably the use of a Delta IV Heavy would allow NASA to accelerate its human exploration objectives at an accelerated rate. Since the flight will be unmanned, there is no need to man-rate the launch vehicle and given the current economic issues facing the United States, the use of so-called “legacy” hardware could ensure that costs are kept down.

The past year has seen the development of the Orion spacecraft proceed at an accelerated pace. Photo Credit: NASA/Lockheed Martin

NASA has also stated its intention to release competitive solicitations for design proposals for new, advanced liquid or solid boosters to be used on the SLS. Another contract that will be opened for competition will be for payload adaptors for both crewed as well as cargo missions.

The Orion spacecraft was originally part of the Constellation Program. Its design has since been modified – but its mission to one day fly astronauts to the Moon, Mars and beyond – remains. The EFT-1 test flight will allow technicians and NASA officials to better determine what further changes need to be made to best aid the completion of NASA’s exploration goals.

The EFT-1 test flight could pave the way for flights back to the Moon, to the planet Mars and to other destinations throughout the solar system. Image Credit: NASA.gov