The Dorado Constellation

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at that fishiest of asterisms – the Dorado constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

Since that time, many additional constellations have been discovered, such as Dorado. This southern constellation, which was discovered in the 16th century by Dutch navigators, is now one of the 88 constellations recognized by the International Astronomical Union (IAU). It is bordered by the constellations of Caelum, Horologium, Hydrus, Mensa, Pictor, Reticulum, and Volans.

Name and Meaning:

Because of its southerly position, Dorado was unknown to the ancient Greeks and Romans so no classical mythological connection exists. However, there are some very nice tales and history associated with this constellation. The name Dorado is Spanish for mahi-mahi, or the dolphin-fish. The mahi-mahi has a opalescent skin that turns blue and gold as the fish dies.

Image of the night sky taken at the European Southern Observatory’s Very Large Telescope in Chile. The Large and Small Magellanic Clouds are visible in the night sky. Credit: ESO, Y. Beletsky

This may very well be the reason Dorado is sometimes called the goldfish is certain stories and legends. Because the early Dutch explorers observed the mahi-mahi chasing swordfish, Dorado was added to their new sky charts following the constellation of the flying fish, Volans. Some very old star atlases refer to Dorado as Xiphias, another form of swordfish, but clearly its “fishy” nature stands!

History of Observation:

Dorado was one of twelve constellations named by Dutch astronomer Petrus Plancius, based on the observations of Dutch sailors that explored the southern hemisphere during the 16th century. It first appeared on a celestial globe published circa 1597-8 in Amsterdam. Dorado was taken a bit more seriously when it was included by Johann Bayer in 1603 in his star atlas, Uranometria, where it appeared under its current name.

It has endured to become one of the 88 modern constellations adopted and approved by the International Astronomical Union.

Notable Objects:

Covering 179 square degrees of sky, it consists of three main stars and contains 14 Bayer/Flamsteed designated stellar members. Dorado has several bright stars and contains no Messier objects. The brightest star in the constellation is Alpha Doradus, a binary star that is approximately 169 light years distant. This binary system is one of the brightest known, and is composed of a blue-white giant (classification A0III) and a blue-white subgiant (B9IV).

The Tarantula Nebula (NGC 2070) located in the southern Dorado constelaltion. Credit: ESO

Beta Doradus, the second brightest star in the constellation, is a Cepheid variable star located approximately 1,050 light years from Earth. Its spectral type varies from white (F-type) to yellow (G-type), like our Sun. Gamma Doradus is another variable, which serves as a prototype for stars known as Gamma Doradus variables, and is approximately 66.2 light years distant.

Another interesting character is HE 0437-5439, an unbound hypervelocity star in Dorado discovered in 2005. This star appears to be receding at the speed of 723 km/s (449 mi/s), and is therefore no longer gravitationally bound to the Milky Way. It is approximately 200,000 light years distant and is a main sequence star belonging to the spectral type BV (a white-blue subdwarf).

Most notable is the Large Magellanic Cloud (LMC), an irregular galaxy located in the constellations Dorado and Mensa. This satellite galaxy to the Milky Way is roughly 1/100 times as massive as our galaxy, with an estimated ten billion times the mass of the Sun. Located about 157,000 light years away, the LMC is home to several impressive objects – like the Tarantula Nebula and the Ghost Head Nebula.

There are no meteor showers associated with the constellation.

The Ghost Head Nebula (NGC 2080), . Credit: ESA/NASA/Mohammad Heydari-Malayeri

Finding Dorado:

The South Ecliptic Pole lies within Dorado and it is bordered by the constellations of Caelum, Horologium, Reticulum, Hydrus, Mensa, Volans and Pictor. It is visible at latitudes between +20° and -90° and is best seen at culmination during the month of January. Let’s begin our explorations with binoculars and Alpha Doradus – the “a” symbol on our map. One of the reasons this star shines so brightly is because it’s not one – but two.

Don’t get your telescope out just yet, because Alpha is separated by only only a couple tenths of a second of arc and both members are about a magnitude apart. Located about 175 light years away from our solar system, this tight pair averages a distance between each other that’s equal to about the same distance as Saturn from our Sun. That’s not particularly unusual for a binary star, but what is unusual is the primary star. Alpha Dor A’s spectrum is “peculiar” – very rich in silicon. It seems to be concentrated in a stellar magnetic spot!

Let’s have a look at Cephid variable star Beta Doradus – the “B” symbol on our map. Beta is an evolved super giant star and every 9.942 days it reaches a maximum brightness of magnitude 3.46 then drops to magnitude 4.08. While these types of changes are so slight they would be difficult to follow with just the eye, that doesn’t mean what happens isn’t important. By studying Cephids we understand “period-luminosity” relation. The pulsation period of a Cepheid gives us absolute brightness, and comparing it with apparent brightness gives us distance. That way, when we find a Cepheid variable star in another galaxy, we can tell just how far away that galaxy is!

Now, let’s go from one end of the constellation to the other with binoculars as we start with Delta Doradus – the “8” shape on our map. If you were on the Moon, this particular star would be the south “pole star” – just like Polaris is to the north on Earth! Sweep along the body of the fish and end at Gamma Doradus – the “Y” shape on our map. Guess what? Another variable star! But this one isn’t a Cepheid. Gamma Doradus variables are variable stars which display variations in luminosity due to non-radial pulsations of their surface.

The stars are typically young, early F or late A type main sequence stars, and typical brightness fluctuations are 0.1 magnitudes with periods on the order of one day. This is a relatively new class of variable stars, having been first characterised in the second half of the 1990s, and details on the underlying physical cause of the variations remains under investigation. We call these mysterious strangers Oscillating Blue Stragglers.

Don’t put away your binoculars yet. We have to look at R Doradus! Here we have a red giant Mira variable star that’s about 200 to 225 light years away from Earth. The visible magnitude of R Doradus varies between 4.8 and 6.6, which makes the variable changes easy to follow with binoculars, but when viewed in the infrared it is one of the brightest stars in the sky. However, this isn’t what the most interesting part is.

With the exception of our own Sun, R Doradus is currently believed to be the star with the largest apparent size as viewed from Earth. The stellar diameter of R Doradus could be as much as 585 million kilometers. That’s upwards to 400 times larger than Sol – yet it has about the same mass! If placed at the center of the Solar System, the orbit of Mars would be entirely contained within the star. Too cool…

Dorado contains a huge amount of deep sky objects very well suited for binoculars, small and large telescopes. So many, in fact, our small star chart would be so cluttered that it would be impossible to read designations. One of the most notable of all is the Large Magellanic Cloud, one of our Milky Way Galaxy’s neighbors and members of our local galaxy group. In itself, it is an irregular dwarf galaxy, distorted by tidal interaction with the Milky Way and may have once been barred spiral galaxies.

The Magellanic Clouds’ radial velocity and proper velocity were recently accurately measured by a team from the Harvard-Smithsonian Center for Astrophysics to produce a 3-D velocity measurement that clocked their passage through the Milky Way galaxy in excess of 480km/s (300 miles per second) using input from Hubble Telescope. This unusually high velocity seems to imply that they are in fact not bound to the Milky Way, and many of the presumed effects of the Magellanic Clouds have to be revised. Be sure to explore the LMC for its own host of nebula and star forming regions. It was host to a supernova (SN 1987A), the brightest observed in over three centuries!

For the telescope, there are many objects in Dorado that you don’t want to miss. (This article would be 10 pages long if I listed them all, so let’s just highlight a few.) For galaxy group fans, why not choose NGC 1566 (RA 04h 20m 00s Dec -56 56.3′) NGC 1566 is a spiral galaxy that dominates the Dorado Group and it is also a Seyfert galaxy as well. At the center of the cluster, look for interacting galaxies NGC 1549 and NGC 1553.

These two bright members are lenticular galaxy NGC 1553 (RA 04h 16m 10.5s Dec -55 46′ 49″), and elliptical galaxy NGC 1549 (RA 04h 15m 45.1s Dec -55 35′ 32″). Their interaction appears to be in the early stage and can be seen in optical wavelengths by faint but distinct irregular shells of emission and a curious jet on the northwest side. Chandra X-ray imaging of NGC 1553 show diffuse hot gas making up 70% of the emissions, dotted with many point-like sources (low-mass X-ray binaries) making up the rest.

Similar to Messier 60, these bright spots are binary star systems of black holes and neutron stars most of which are located in globular clusters and reflect this old galaxy’s very active past. In these systems, material pulled off a regular star is heated and gives off X-rays as it falls toward the accompanying black hole or neutron star.

The location of the southern Constellation Dorado. Credit: IAU/Sky&Telescope magazine

 

Turn your telescope towards NGC 2164 (RA 05h 58m 53s Dec -68 30.9′). Here we are resolving an open star cluster / globular cluster that’s in another galaxy, folks! Also nearby you’ll find faint open cluster NGC 2172 (RA 5 : 59.9 Dec -68 : 38) and galactic star cluster NGC 2159 (05 57.8, -68 38). What a treat to study in another galaxy!

Would you like to study another complex? Then let’s take a look at NGC 2032 (RA 05h 35m 21s Dec -67 34.1′). Better known as the “Seagull Nebula” this complex that contains four separate NGC designations: NGC 2029, NGC 2032, NGC 2035 and NGC 2040. Spanning across an open star cluster, there are many nebula types here including emission nebula, reflection nebula and HII regions. It is also bissected by a dark nebula, too!

Of course, no telescope trip through Dorado would be complete without stopping by NGC 2070 (RA 05h 38m 37s Dec -69 05.7′) – the “Tarantula Nebula”. Located about 180,000 light years from our solar system and first recorded by Nicolas Louis de Lacaille in 1751, this huge HII region is an extremely luminous object. Its luminosity is so bright that if it were as close to Earth as the Orion Nebula, the Tarantula Nebula would cast shadows. In fact, it is the most active starburst region known in our Local Group of galaxies! At its core lies the extremely compact cluster of stars that provides the energy to make the nebula visible. And we’re glad it does!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Delphinus Constellation

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at “the Dolphin” – the Delphinus constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these is the northern constellation of Delphinus, which translates to “the Dolphin” in Latin. This constellation is located close to the celestial equator and is bordered by Vulpecula, Sagitta, Aquila, Aquarius, Equuleus, and Pegasus. Today, Delphinus is one of the 88 modern constellations recognized by the International Astronomical Union (IAU).

Name and Meaning:

According to classical Greek mythology, Delphinus represented a Dolphin. Once you “see” Delphinus, it is not hard to picture a small dolphin leaping from the waters of the Milky Way. According to Greek legend, Poseidon wanted to marry Amphitrite, a Nereid – or sea nymph. However, she hid from him. Poseidon sent out searchers, one of whom was named Delphinus.

Delphinus is depicted on the left of this card from Urania’s Mirror (1825). Credit: Library of Congress/Sidney Hall

Can you guess who found Amphitrite and talked her into marrying? You got it. In gratitude, Poseidon placed Delphinus’ image among the stars. Not a bad call since the Nereids were known to live in the silvery caves of the deep and the silvery Milky Way is so nearby!

In the other version of the myth, it was Apollo – the god of poetry and music – who placed the dolphin among the constellations for saving the life of Arion, a famed poet and musician. Arion was born on the island of Lesbos and his skill with the lyre made him famous in the 7th century BC.

History of Observation:

The small constellation of Delphinus was one of the original 48 constellations complied by Ptolemy in the Almagest in the 2nd century CE. In Chinese astronomy, the stars of Delphinus are located within the Black Tortoise of the North (B?i F?ng Xuán W?) – one of the four symbols associated with the Chinese constellations. Delphinus was also recognized by some cultures in Polynesia – particularly the people of Pukapuka and the Tuamotu Islands.

Notable Objects:

Located very near the celestial equator, this kite-like asterism is comprised of 5 main stars and contains 19 stellar members with Bayer/Flamsteed designations. It’s primary star, Alpha Delphini (aka. Sualocin), is a multiple star system located 240 light years from Earth which consists of an aging subgiant of 2.82 Solar masses, and a companion that cannot be discerned because it is too close to its primary and too faint.

Next is Beta Delphini (aka. Rotanev), a pair of stars located approximately 101 light years from Earth. This system is comprised of a F5 III class blue-white giant and a F5 IV blue-white subgiant. If you don’t think astronomers have a sense of humor, then you better think again! Sualocin and Rotanev were both named by Italian astronomer Nicolaus Cacciatore, who simply spelled the Latin form of name (Nicolaus Venator) backwards as a practical joke!

Globular cluster NGC 6934. Credit: Hubble Space Telescope

Epsilon Delphini (aka. Deneb Dulfim) is a spectral class B6 III blue-white giant star located about 358 light years from Earth. It’s traditional name comes from the Arabic ðanab ad-dulf?n, meaning “tail of the Dolphin”.  Then there’s Rho Aquilae (aka. Tso Ke), a main sequence A2V white dwarf that is 154 light years distant. The star’s traditional name means “the left flag” in Mandarin, which refers to an asterism formed by Rho Aquilae and several stars in the constellation Sagittarius.

Delphinus is also home to numerous Deep Sky Objects, like the relatively large globular cluster NGC 6934. Located near Epsilon Delphini, this cluster is roughly 50,000 light years from Earth and was discovered by William Herschel on September 24th, 1785. Another globular cluster, known as NGC 7006, can be found near Gamma Delphini, roughly 137,000 light-years from Earth.

Delphinus is also home to the small planetary nebulas of NGC 6891 and NGC 6905 (the “Blue Flash Nebula”). Whereas the former is located near Rho Aquilae about 7,200 light years from Earth, the more notable Blue Flash Nebula (named because of its blue coloring) is located between 5,545 and 7,500 light-years from Earth.

Finding Delphinus:

Delphinus is bordered by the constellations of Vulpecula, Sagitta, Aquila, Aquarius, Equuleus and Pegasus. It is visible to all viewers at latitudes between +90° and -70° and is best seen at culmination during the month of September. Are you ready to start exploring Delphinus with binoculars? Then we’ll star with Alpha Delphini, whose name is Sualocin.

The small planetary nebula of NGC 6891. Credit: Judy Schmidt

Sualocin has seven components: A and G, a physical binary, and B, C, D, E, and F, which are optical and have no physical association with A and G. The primary is another rapid rotator star, whipping around at about 160 kilometers per second at its equator – or about 70 times faster than our Sun.

What it’s classification is, is confusing as well. It might a hydrogen-fusing main sequence star, and it subgiant that might just be starting to evolve. Wherever Suolocin lay in the scheme of things, there’s no use trying to resolve out the companion star, because it’s only a fraction of a second of arc away. However, Alpha’s nearby star, still makes for an interesting binocular view!

Now let’s look at Beta Delphini. Are you still ready for a smile? Good old Cacciatore wasn’t done yet. Beta’s name is Rotanev, which is a reversal of his Latinized family name, Venator. Here again we have a multiple star system. Rotanev has five components. Stars A and B are are a true physical binary star, while the others are simply optical companions. This time it’s cool to get out the telescope and split them!

Beta Delphini is a fine target for testing quality optics. At 97 light years from Earth, Rotanev’s components are only separated by about one stellar magnitude and 0.65 seconds of arc. By the way, in case you were wondering…. Nicolaus Venator was the assistant of the one and only Giuseppe Piazzi!

Are you ready for a look at Gamma Delphini? It’s the Y shape on the map. Here we have a binary star very worthy of even a small telescope. Located about a 101 light-years away from Earth, Gamma is one of the best known double stars in the night sky. The primary is a yellow-white dwarf star, a the secondary is an orange subgiant star. Both are separated by about one stellar magnitude and a very comfortable 9.2 seconds of arc apart.

The globular cluster NGC 7006. Credit: NASA

Regardless of their spectral class, take a look at how differently their colors appear in the telescope. While Gamma 1 (to the west) should by all rights be white, it often appears pale yellow orange, while Gamma 2 can appear yellow, green, or blue.

Before we put our binoculars away, let’s have a look at Delta Delphini – the figure “8” on our chart. Delta has no given name, but it has a partner. That’s right, it’s also a binary star. Its identical members are too close together to see separately and only by studying them spectroscopically were astronomers able to detect their 40.58 day orbital period.

Although Delta is officially classed as a type A (A7) giant star, it has a very strange low stellar temperature and an even stranger metal abundance. So what’s going on here? Chances are the Delta pair are really class F subgiants that have just ended core hydrogen fusion and both slightly variable. Do they orbit close to one another? You bet. So close, in fact, there orbit is only about the same distance as Mercury is from our Sun!

Now let’s take out the telescopes and have a look at NGC 7006 (RA 21h 1m 29.4 Dec +16 11′ 14.4) just a few arc minutes due east of Gamma. At magnitude 10, this small and powerful globular cluster might be mistaken for a stellar point in small telescopes at low power, for a very good reason… it’s very, very far away.

It is thought to be about 125 thousand light years from the galaxy’s core and over 135 thousand light years from us – far, far beyond the galaxy’s halo where it belongs. Even though it is a Class 1 globular, the most star dense in the Shapely?Sawyer classification system, and many observers comment that it looks more planetary nebula than it does a globular cluster!

Delphinus Constellation Map. Credit: IAU and Sky&Telescope magazine

Try NGC 6934 instead (RA 20 : 34.2 Dec +07 : 24) . This 50,000 light year distant globular cluster is much brighter and larger, though at Class VIII it doesn’t even come close to having as much stellar concentration. Discovered by Sir William Herschel on September 24, 1785, you’ll enjoy this one just for the rich star field that accompanies it. For larger telescope, you’ll enjoy the resolution and the study in contrasts between these two pairs.

Now let’s take a look at 12th magnitude planetary nebula, NGC 6891 (RA 20 : 15.2 Dec +12 : 42). Here we have an almost stellar appearance, but get tight on that focus and up the magnification to reveal its nature. This is anything but a star. As Martin A. Guerrero (et al) indicated in a 1999 study:

“Narrow-band and echelle spectroscopy observations show a great wealth of structures. The bright central nebula is surrounded by an attached shell and a detached outer halo. Both the inner and intermediate shells can be described as ellipsoids with similar major to minor axial ratios, but different spatial orientations. The kinematical ages of the intermediate shell and halo are 4800 and 28000 years, respectively. The inter-shell time lapse is in good agreement with the evolutionary inter-pulse time lapse. A highly collimated outflow is observed to protrude from the tips of the major axis of the inner nebula and impact on the outer edge of the intermediate shell. Kinematics and excitation of this outflow provide conclusive evidence that it is deflected during the interaction with the outer edge of the intermediate shell.”

If you’d like a real, big, telescope galaxy challenge, try galaxy group NGC 6927, NGC 6928 and NGC 6930. The brightest is NGC 6928 at magnitude 13.5, (RA 20h 32m 51.0s Dec: +09°55’49”). None of them will be easy… But what challenge is?

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Cygnus Constellation

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at the “Swan” – the Cygnus constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of the constellations identified by Ptolemy was Cygnus, otherwise known as “the Swan”. The constellation is easy to find in the sky because it features a well-known asterism known as the Northern Cross. Cygnus was first catalogued the by Greek astronomer Ptolemy in the 2nd century CE and is today one of the 88 recognized by the IAU. It is bordered by the constellations of Cepheus, Draco, Lyra, Vulpecula, Pegasus and Lacerta.

Name and Meaning:

Because the pattern of stars so easily resembles a bird in flight, Cygnus the “Swan” has a long and rich mythological history. To the ancient Greeks, it was at one time Zeus disguising himself to win over Leda, and eventually father Gemini, Helen of Troy, and Clytemnestra. Or perhaps it is poor Orpheus, musician and muse of the gods, who when he died was transformed into a swan and placed in the stars next to his beloved lyre.

Artist’s conception of what Cygnus’ figure looks like, against the backdrop of stars that make up the constellation. Credit: Wendy Stenzel (first published on NASA Kepler website)

It could be king Cycnus, a relative of Phaethon, son of Apollo, who crashed dear old dad’s fiery sky chariot and died. Cygcus was believed to have driven up and down the starry river so many times looking for Phaethon’s remains that he was finally transformed into stars. No matter what legend you choose, Cygnus is a fascinating place… and filled with even more fascinating areas to visit!

History of Observation:

Because of its importance in ancient Greek mythology and astrology, the sprawling constellation of Cygnus was one of Ptolemy’s original 48 constellations. To Hindu astronomers, the Cygnus constellation is also associated with the “Brahma Muhurta” (“Moment of the Universe”). This period, which lasts from 4:24 AM to 5:12 AM, is considered to be the best time to start the day.

Cygnus is also highly significant to the folklore and mythology of many people in Polynesia, who also viewed it as a separate constellation. These include the people of Tonga, the Tuamatos people, the Maori (New Zealand) and the people of the Society Islands. Today, Cygnus is one of the official 88 modern constellations recognized by the IAU.

Notable Objects:

Flying across the sky in a grand position against the backdrop of the Milky Way, Cygnus consists of 6 bright stars which form an asterism of a cross comprised of 9 main stars and there are 84 Bayer/Flamsteed designated stars within its confines. It’s most prominent star, Deneb (Alpha Cygni), takes it name from the Arabic word dhaneb, which is derived from the Arabic phrase Dhanab ad-Dajajah, which means “the tail of the hen”.

Cygnus as depicted in Urania’s Mirror, a set of constellation cards published in London c.1825. Surrounding it are Lacerta, Vulpecula and Lyra. Credit: Sidney Hall/US Library of Congress

Deneb is a blue-white supergiant belonging to the spectral class A2 Ia, and is located approximately 1,400 light years from Earth. In addition to being the brightest star in Cygnus, it is one of the most luminous stars known. Being almost 60,000 times more luminous than our Sun and about 20 Solar masses, it is also one of the largest white stars known.

Deneb serves as a prototype for a class of variable stars known as the Alpha Cygni variables, whose brightness and spectral type fluctuate slightly as a result of non-radial fluctuations of the star’s surface. Deneb has stopped fusing hydrogen in its core and is expected to explode as a supernova within the next few million years. Together with the stars of Altair and Vega, Deneb forms the Summer Triangle, a prominent asterism in the summer sky.

Next up is Gamma Cygni (aka. Sadr), whose name comes from the Arabic word for “the chest”. It is also sometimes known by its Latin name, Pectus Gallinae, which means “the hen’s chest.” This star belongs to the spectral class F8 lad, making it a blue-white supergiant, and is located approximately 1,800 light years from Earth.

It can easily seen in the night sky at the intersection of the Northern Cross thanks to its apparent magnitude of 2.23, which makes it one of the brightest stars that can be seen in the night sky. It is also believed to be only about 12 million years old and consumes its nuclear fuel more rapidly because of its mass (12 Solar masses).

Gamma Cygni (Sadr) is surrounded by a diffuse emission nebula, IC 1318, also known as the Sadr region or the Gamma Cygni region. Credit: Eric Larsen

Then there’s Epsilon Cygni (ak. Glenah), an orange giant of the spectral class K0 III that is 72.7 light years distant. It’s traditional name comes from the Arabic word janah, which means “the wing” (this name is shared with Gamma Corvi, a star in the Corvus constellation). It is 62 times more luminous than the Sun and measures 11 Solar radii.

Delta Cygni (Rukh), is a triple star system in Cygnus, which is located about 165 light years away. The system consists of two stars lying close together and a third star located a little further from the main pair. The brightest component is a blue-white fast-rotating giant belonging to the spectral class B9 III. The star’s closer companion is a yellow-white star belonging to the spectral class F1 V, while the third component is an orange giant.

Last, there’s Beta Cygni (aka. Albireo) which is only the fifth brightest star in the constellation Cygnus, despite its designation. This binary star system, which appears as a single star to the naked eye, is approximately 380 light-years distant. The traditional name is the result of multiple translations and misunderstandings of the original Arabic name, minqar al-dajaja (“the hen’s beak”). It is one of the stars that form the Northern Cross.

The binary system consists of a yellow star which is itself a close binary star that cannot be resolved as two separate objects. Its second star is a fainter blue fast-rotating companion star with an apparent magnitude of 5.82 that is located 35 arc seconds apart from its primary.

Albireo A, the primary star of Beta Cygni (which is itself a binary system). Credit: Henryk Kowalewski

Cygnus is also home to a number of Deep Sky Objects. These include Messier 29 (NGC 6913), an open star cluster that is about 10 million years old and located about 4,000 light years from Earth. It can be spotted with binoculars a short distance away from Gamma Cygni – 1.7 degrees to the south and a little east.

Next up is Messier 39 (NGC 7092), another open star cluster that is located about 800 light-years away and is between 200 and 300 million years old. All the stars observed in this cluster are in their main sequence phase and the brightest ones will soon evolve to the red giant stage. The cluster can be found two and a half degrees west and a degree south of the star Pi-2 Cygni.

There is also the Fireworks Galaxy (NGC 6946), an intermediate spiral galaxy that is approximately 22.5 million light-years distant. The galaxy is located near the border of the constellation Cepheus and lies close to the galactic plane, where causes it to become obscured by the interstellar matter of the Milky Way.

Then there’s the famous X-ray source known as Cygnus X-1, which is one of the strongest that can be seen from Earth. Cygnus X-1 is notable for being the first X-ray source to be identified as a black hole candidate, with a mass 8.7 times that of the Sun. It orbits a blue supergiant variable star some 6,100 light-years away, which is one of two stars form a binary system.

Over time, an accretion disk of material brought from the star by a stellar wind has formed around Cygnus X-1, which is the source of its X-ray emissions.

Finding Cygnus:

Cygnus is visible to all observers at latitudes between +90° and -40° and is best seen at culmination during the month of September.  For a period of 15 days around the peak date of August 20, watch for the Kappa Cygnid meteor shower. This annual meteor shower has a radiant near the bright star Deneb and an average fall rate of about 12 meteors per hour. It is noted to have many bright fire balls called “bolides” and the best time to watch is when the constellation is directly overhead.

Because Cygus is so rich in things to visit, we shall only touch very briefly on just a few. Let’s begin with our unaided eye as we take a look at the brightest star of the constellation, Alpha Cygni – Deneb. Here we have not only an extremely luminous blue super giant star – but a pulsing variable star, too. Its changes are minor – only about 1/10 of a stellar magnitude, but Deneb is its own prototype.

Its stellar oscillations are very complex, consisting of multiple pulsation frequencies as well as a fundamental one. This means changes in brightness occur between 5 and 10 days apart, but that’s a good thing. If the changes weren’t small, Deneb would blow itself to bits!

If you are looking at Cygnus for an area well away from city lights on a night when there is no Moon, look just northwest of Deneb for the North America Nebula (NGC 7000). This is an excellent emission nebula that covers as much area of the sky as 10 full Moons! At 3 full degrees, you’ll be looking for a vague, misty patch of silver-ness that about as broad as your thumb held at arm’s length.

While telescopes and binoculars are grand, remember this particular region is so large that you can easily over magnify it and often your unaided eye is all you need to catch this elusive interstellar cloud of ionized hydrogen (H II region). Now, get out your binoculars and let’s dance!

Messier 29 is very easy and bright and you can find it about a fingerwidth south and a little east of Gamma Cygni – the “8” shape on our map. This open cluster of stars has just a handful of bright members and will look like a small rendition of the “Big Dipper”. M29 is about 7,200 light years away from Earth, so the fact we can see it at all in binoculars is pretty impressive! Now, try Messier 39.

You’ll find this one about a fingerwidth west and southwest of Pi2, which looks like TT2 on our map. This galactic star cluster is far brighter and richer than the last. It will show as a triangle shape with bright stars in each corner and a couple of dozen fainter stars captured within the center. M39 is only about 800 light years away from our solar system, but it could be as much as 300 million years old!

Don’t put your binoculars away just yet. You’ve got to visit Omega 2 before you stop! Its name is Ruchbah and it’s a double star about 500 light years from Earth, consisting of a magnitude 5.44 star of spectral class M2 and a 6.6 magnitude star of spectral class A0. The stars are well separated at 256″ apart and can be seen in binoculars and totally glorious in a telescope. Because of the color contrast (red main star and blue companion), Ruchba is a beautiful object for amateur astronomers.

The northern Cygnus constellation. Credit: IAU

Now try Beta Cygni – Albireo. It is also known as one of the most attractive and colorful double stars in the sky. Beautiful Beta 1 is an orange giant K star and Beta 2 is a main-sequence B star of a soft, blue hue. If you can’t separate them in your binoculars, use a telescope! This seasonal favorite is one that’s not to be missed! Now, let’s try a couple objects for the telescope.

One of the true prizes of the Cygnus region for any telescope is the Holy Veil (NGC 6960, 6962, 6979, 6992, and 6995). You’ll find it just south of Epsilon Cygni and the easiest segment to find is 6960, which runs through the star 52 Cygni. This is an ancient supernova remnant covering approximately 3 degrees of the sky and an experience you won’t soon forget if you are viewing from a dark sky site.

The source supernova exploded some 5,000 to 8,000 years ago and it is simply amazing to think that anything remains to be seen. It was discovered on 1784 September 5 by William Herschel. He described the western end of the nebula as “Extended; passes thro’ 52 Cygni… near 2 degree in length.” and described the eastern end as “Branching nebulosity… The following part divides into several streams uniting again towards the south.”

Even though it is any where from from 1,400 to 2,600 light-years light years away, you’ll find long and wondrous tongues of material to capture your interest and delight your eye and you follow them to their ends!

More challenging is the Crescent Nebula (NGC 6888 or Caldwell 27) located at RA 20h 12m 7s Dec +38 21.3′. This is an emission nebula fueled by a Wolf-Rayet star located about 5000 light years away. It is formed by the fast stellar wind careening off illuminating the slower moving wind ejected by the star when it went into the red giant star stage. What’s left is a collision… a shell and two shock waves… one moving outward and one moving inward. A what a grand one it is!

The Fireworks Galaxy (NGC 6946) taken by the Subaru Telescope. Credit: NAOJ/Robert Gendler

For galaxy fans, you have got to point your telescope towards NGC 6946, the “Fireworks Galaxy” (RA 20h 34m 52.3s Dec +60 09 14). Who cares if this barred spiral galaxy 10 million light years away? This is one supernovae active baby! At one time, it was widely believed that NGC 6946 was a member of our Local Group; mainly because it could be easily resolved into stars.

There was a reddening observed in it, believed to be indicative of distance – but now know to be caused by interstellar dust. But it isn’t the shrouding dust cloud that makes NGC 6946 so interesting, it’s the fact that so many supernova and star-forming events have sparkled in its arms in the last few years that has science puzzled! So many, in fact, that they’ve been recorded every year or two for the last 60 years…

Now, for the really cool part – understanding barred structure. Thanks to the Hubble Space Telescope and a study of more than 2,000 spiral galaxies – the Cosmic Evolution Survey (COSMOS) – astronomers understand that barred spiral structure just didn’t occur very often some 7 billion years ago in the local universe. Bar formation in spiral galaxies evolved over time.

A team led by Kartik Sheth of the Spitzer Science Center at the California Institute of Technology in Pasadena discovered that only 20 percent of the spiral galaxies in the distant past possessed bars, compared with nearly 70 percent of their modern counterparts. This makes NGC 6946 very rare, indeed… Since its barred structure was noted back in Herschel’s time and its age of 10 billion years puts it beyond what is considered a “modern” galaxy.

It that all there is? Not hardly. Try NGC 6883, an open cluster located about 3 degrees east/northeast of Eta Cygni. It’s a nice, tight cluster that involves a well-resolved double star and a bonus open cluster – Biurakan 2 – as well. Or how about NGC 6826 located about 1.3 degrees east/northeast of Theta. This one is totally cool… the “Blinking Planetary”!

This planetary nebula is fairly bright and so is the central star… but don’t stare at it, or it will disappear! Look at it averted and the central star will appear again. Neat trick, huh? Now try NGC 6819 about 8 degrees west of Gamma. Here you’ll find a very rich, bright open cluster of about 100 stars that’s sure to please. It’s also known as Best 42!

There’s many more objects in Cygnus than just what’s listed here, so grab yourself a good star chart and fly with the “Swan”!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Corona Borealis Constellation

Welcome to another edition of Constellation Friday! Today, in honor of the late and great Tammy Plotner, we take a look at the “Northern Crown” – the Corona Borealis constellation. Enjoy!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations was Corona Borealis, otherwise known as the “Northern Crown”. This small, faint constellation is the counterpart to Corona Australis – aka. the “Southern Crown”. It is bordered by the constellations of Hercules, Boötes and Serpens Caput, and has gone on to become one of the 88 modern constellations recognized by the International Astronomical Union.

Name and Meaning:

In mythology, Corona Borealis was supposed to represent the crown worn by Ariadne – a present from Dionysus. In Celtic lore, it was known as Caer Arianrhod, or the “Castle of the Silver Circle”, home to the Lady Arianrhod. Oddly enough, it was also known to the Native Americans as well, who referred to it as the “Camp Circle” – a heavenly rendition of their celestial ancestors.

Hercules and Corona Borealis, as depicted in Urania’s Mirror (c.?1825). Credit: Library of Congress

History of Observation:

Corona Borealis was one of the original 48 constellations mentioned in the Almagest by Ptolemy. To the medieval Arab astronomers, the constellation was known as al-Fakkah,  which means “separated” or “broken up” a reference to the resemblance of the constellation’s stars to a loose string of jewels (sometimes portrayed as a broken dish). The name was later Latinized as Alphecca, which was later given to Alpha Coronae Borealis. In 1920, it was adopted by the International Astronomical Union (IAU) as one of the 88 modern constellations.

Notable Objects:

Corona Borealis has no bright stars, 6 main stars and 24 stellar members with Bayer/Flamsteed designations. It’s brightest star – Alpha Coronae Borealis (Alphecca) – is an eclipsing binary located about 75 light years away. The primary components is a white main sequence star that is believed to have a large disc around it (as evidenced by the amount of infrared radiation it emits), and may even have a planetary or proto-planetary system.

The second brightest star, Beta Coronae Borealis (Nusakan), is a spectroscopic binary that is located 114 light years away. It is an Alpha-2 Canum Venaticorum (ACV) type star, a class of variable (named after a star in the constellation Canes Venatici) that are main sequence stars that are chemically peculiar and have strong magnetic fields. Its traditional name, Nusakan, comes from the Arabic an-nasaqan which means “the (two) series.”

Corona Borealis Galaxy Cluster – Abell 2065. Credit: NASA (Wikisky)

Corona Borealis contains few Deep Sky Objects that would be visible to amateur astronomers. The most notable is the Corona Borealis Galaxy Cluster (aka. Abell 2065), a densely-populated cluster located between 1 and 1.5 billion years from Earth. It lies about one degree southwest of Beta Coronae Borealis, in the southwest corner of the constellation. The cluster contains more than 400 galaxies in an area spanning about one degree in the sky.

Corona Borealis also has five stars that have confirmed exoplanets orbiting them, most of which were detected using the radial velocity method. These include the the orange giant Epsilon Coronae Borealis, which has a Super-Jupiter (6.7 Jupiter masses) that orbits it at a distance of 1.3 AU and with a period of 418 days.

There’s also Kappa Coronae Borealis, an orange subgiant that is orbited by both a debris disk and a gas giant. This planet is 2.5 times as massive as Jupiter and orbits the star with a period of 3.4 years. Omicron Coronae Borealis is a clump giant (a type of red giant) with one confirmed exoplanet – a gas giant with 0.83 Jupiter masses that orbits its star every 187 days.

HD 145457 is an orange giant that has one confirmed planet of 2.9 Jupiter masses that takes 176 days to complete an orbit. XO-1 is a yellow main-sequence star located approximately 560 light-years away with a hot Jupiter (roughly the same size as Jupiter) exoplanet. This planet was discovered using the transit method and completes an orbit around its star every three days.

Artist’s concept of “hot Jupiter” orbiting a distant star. Credit: NASA/JPL-Caltech

Finding Corona Borealis:

Corona Borealis is visible at latitudes between +90° and -50° and is best seen at culmination during the month of July. Using binoculars, let’s start with Alpha Coronae Borealis. It’s name is Gemma, or on some star charts – Alphecca. At 75 light years away, we have a nice binary star system whose companion star produces a very faint eclipse every 17.3599 days. Even though Gemma is quite some distance in relative sky terms from Ursa Major, you might be surprised to know that it’s actually part of the Ursa Major moving star group!

Shift your attention to Beta Coronae Borealis. It’s traditional name Nusakan. Again, it looks like one star, but it’s actually two. Nusakan is a double star that’s about 114 light-years and the primary is a variable star that changes every so slightly about every 41 days. The two components are separated by about 0.25 arc seconds – way too close for amateur telescopes – but that’s not all. In 1944 F.J. Neubauer found a small variation in the radial velocity of Nusakan which may lead to a third orbiting body about 10 times the size of Jupiter.

Now have a look at Gamma. Again, we have a binary star that’s just too darn close to split with anything but a large telescope. Struve 1967 is a close binary with an orbit of 91 years. The position angle is 265º and separation about 0.2″. Instead, try focusing your attention on Zeta 1 and Zeta 2. Known as Struve 1965, this pair is a pretty blue white and they are well spaced at 7.03″ and about one stellar magnitude in difference. Nu1 and Nu2 are also very pretty in binoculars. Here we have an optic double star. Although they aren’t physically related, this widely seperated pair of orange giant stars is a pleasing sight in binoculars!

The location of the Corona Borealis Constellation. Credit: IAU/Sky&Telescope magazine

Out of all the singular stars here, you definitely have to take a look at R Coronae Borelis – known as R Cor Bor. Discovered nearly 200 years ago by English amateur, Edward Pigot, R Coronae Borealis is the prototype star of the R Coronae Borealis (RCB) type variables. They are very unusual type of variable star – one where the variability is caused by the formation of a cloud of carbon dust in the line of sight. Near the stellar photosphere, a cloud is formed – dimming the star’s visual brightness by several magnitudes.

Then the cloud dissipates as it moves away from the star. All RCB types are hydrogen-poor, carbon- and helium-rich, and high-luminosity. They are simultaneously eruptive and pulsating. They could fade anywhere from 1 to 9 magnitudes in a month… Or in a hundred days. It’s normally magnitude 6… But it could be magnitude 14. No wonder it has the nickname “Fade-Out star,” or “Reverse Nova”!

Unfortunately, Corona Borealis contains no bright deep sky objects, but it does have one claim to fame – the highly concentrated galaxy cluster, Abell 2065. For observers with larger telescope, many members of this fascinating 1-1.5 billion light years distant group are visible. This rich cluster of galaxies is located slightly more than a degree southwest of Beta Cor Bor and covers about a full degree of sky! Not for the faint of heart… Some of these galaxies list at magnitude 18….

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Sources:

The Carina Constellation

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with the “keel of the ship”, the Carina constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these constellations, known as Argo Navis, would eventually be divided into three asterism  – one of which became the southern constellations of Carina. Bordered by the Vela, Puppis, Pictor, Volans, Chamaeleon, Musca and Centaurus constellations, Carina is one of 88 modern constellations that are currently recognized by the IAU.

Name and Meaning:

The stellar southern constellation Carina is part of the ancient constellation known as Argo Navis. It is now abbreviated and represents the “Keel”. While Carina has no real mythological connection, since its stars weren’t visible to the ancient Greeks and Romans, it does have a fascinating history. Argo Navis (or simply Argo) was a large southern constellation representing the Argo, the ship used by Jason and the Argonauts in Greek mythology.

Johannes Hevelius’ Argo Navis from Uranographia (1690). Credit: NASA/Chandra/Harvard University

The Argo was built by the shipwright Argus, and its crew were specially protected by the goddess Hera. The best source for the myth is the Argonautica by Apollonius Rhodius. According to a variety of sources of the legend, the Argo was said to have been planned or constructed with the help of Athena.

According to other legends it contained in its prow a magical piece of timber from the sacred forest of Dodona, which could speak and render prophecies. After the successful journey, the Argo was consecrated to Poseidon in the Isthmus of Corinth. It was then translated into the sky and turned into the constellation of Argo Navis. The abbreviation for it was “Arg”, and the genitive was “Argus Navis”.

History of Observation:

Carina is the only one of Ptolemy’s list of 48 constellations that is no longer officially recognized as a constellation. In 1752, French astronomer Nicolas Louis de Lacaille subdivided Argo Navis into Carina (the keel of the ship), Puppis (the Poop deck), and Vela (the sails). Were this still considered to be a single constellation, it would be the largest of all, being larger than Hydra.

When Argo Navis was split, its Bayer designations were also split. Whereas Carina got the Alpha, Beta and Epsilon stars, Vela got Gamma and Delta, Puppis got Zeta, and so on. The constellation Pyxis occupies an area which in antiquity was considered part of Argo’s mast. However, Pyxis is not typically considered part of Argo Navis, and in particular its Bayer designations are separate from those of Carina, Puppis and Vela.

Canopus (alpha Carinae), the brightest star in the Carina constellation and the second brightest star in the night sky. Credit: NASA

Notable Features:

The Carina constellation consists of 9 primary stars and has 52 Bayer/Flamsteed designated stars. It’s alpha star, Canopus, is not only he brightest star in the constellation, but the second brightest in the night sky (behind Sirius). This F-type giant is 13,600 times brighter than our Sun, with an apparent visual magnitude of -0.72 and an absolute magnitude of -5.53.

The name is the Latinized version of the Greek name Kanobos, presumably derived from the pilot of the shop that took Menelaus of Sparta to Troy to retrieve Helen in The Iliad. It is also known by its Arabic name, Suhail, which is derived from the Arabic name for several bright stars.

Before the launching of the Hipparcos satellite telescope, distance estimates for the star varied widely, from 96 light years to 1200 light years. Had the latter distance been correct, Canopus would have been one of the most powerful stars in our galaxy. Hipparcos established Canopus as lying 310 light years (96 parsecs) from our solar system; this is based on a parallax measurement of 10.43 ± 0.53 mas.

The difficulty in measuring Canopus’ distance stemmed from its unusual nature. Canopus is too far away for Earth-based parallax observations to be made, so the star’s distance was not known with certainty until the early 1990s. Canopus is 15,000 times more luminous than the Sun and the most intrinsically bright star within approximately 700 light years.

Sky as seen from central South America showing the approximate location of the new comet on August 19 in Puppis near the bright star Canopus. Credit: Stellarium

For most stars in the local stellar neighborhood, Canopus would appear to be one of the brightest stars in the sky. Canopus is outshone by Sirius in our sky only because Sirius is far closer to the Earth (8 light years). Its surface temperature has been estimated at 7350 ± 30 K and its stellar diameter has been measured at 0.6 astronomical units 65 times that of the sun.

If it were placed at the centre of the solar system, it would extend three-quarters of the way to Mercury. An Earth-like planet would have to lie three times the distance of Pluto! Canopus is part of the Scorpius-Centaurus Association, a group of stars which share similar origins.

Next up is Miaplacidus (beta Carinae), an A-type subgiant located approximately 111 light years from Earth. It is the second brightest star in the constellation and the 29th brightest star in the sky. The star’s name means “placid waters”, which is derived from the combination of the Arabic word for waters (miyah) and the Latin word for placid (placidus).

Then there’s Eta Carinae, a luminous blue variable (LBV) binary star that is between 7,500 and 8,000 light years distant from Earth. The combined luminosity of this system is four million times that of our Sun, and the most massive star in the system has between 120 and 250 Solar Masses. It is sometimes known by its traditional names, Tseen She (“heaven’s altar” in Chinese) and Foramen.

Eta Carinae, one of the most massive stars known. Image credit: NASA
Eta Carinae, one of the most massive stars in the known Universe. Credit: NASA

Also, it is believed that Eta Carinae will explode in the not-too-distant future, and it will be the most spectacular supernovae humans have ever seen. This supernova (or hypernova) might even affect Earth, since the star is only 7,500 light years away, causing disruption to the upper layers of the atmosphere, the ozone layer, satellites, and spacecraft could be damaged and any astronauts who happen to be in space could be injured.

Avior (epsilon Carinae) is another double star system, consisting of a K0 III class orange giant and a hot hydrogen-fusing B2 V  blue dwarf. With an apparent magnitude of 1.86 and is 630 light years distant, it is the 84th brightest star in the sky.  The name Avior was assigned in the late 1930s by Her Majesty’s Nautical Almanac Office as a navigational aid, at the request of the Royal Air Force.

Aspidiske (aka. Iota Carinae) is a rare spectral type A8 Ib white supergiant located 690 light years from Earth. With a luminosity of 4,900 Suns (and seven Solar Masses), it is the 68th brightest star in the sky and is estimated to be around 40 million years old. It is known by the names Aspidiske, Turais and Scutulum, all diminutives of the word “shield,” (in Greek, Arabic and Latin, respectively).

Since the Milky Way runs through Carina, there are a large number of Deep Sky Objects associated with it. For instance, there’s the Carina Nebula (aka. the Eta Carinae Nebula, NGC 3372), a large nebula surrounding the massive stars Eta Carinae and HD 93129A. In addition to being four time as bright as the Orion Nebula (Messier 42), it is one of the largest diffuse nebulae known.

The Eta Carinae Nebula, one of the largest nebulae in the known Universe. Credit: ESO, IDA, Danish 1.5 m, R. Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron

The nebula is between 6,500 and 10,000 light years from Earth, and has an apparent visual magnitude of 1.0. It contains several O-type stars (extremely luminous hot, bluish stars, which are very rare). The first recorded observation of this nebula was made by the French astronomer Nicolas Louis de Lacaille in 1751-52, who observed it from the Cape of Good Hope.

The Carina Nebula contains two smaller nebulae – the Homunculus Nebula and the Keyhole Nebula. The Keyhole Nebula – a small, dark cloud of dust and with bright filaments of fluorescent gas, was named by John Herschel in the 19th century. It is about seven light years in diameter, and appears contrasted against the bright nebula in the background.

The Homunculus Nebula (Latin for “Little Man”) is an emission nebula embedded within the Eta Carinae Nebula, immediately surrounding the star Eta Carinae. The nebula is believed to have formed after an enormous outburst from the star, which coincided with Eta Carinae becoming the second brightest star in the night sky. The light of this outburst was visible from Earth by 1841.

There’s also the Theta Carinae Cluster (aka. the Southern Pleiades, because of its resemblance to the Pleiades cluster. This open cluster was discovered by Lacaille in 1751,  is located approximately 479 light years from Earth and is visible to the naked eye. The brightest star in the cluster, as the name indicates, is Theta Carinae, a blue-white dwarf.

The Keyhole Nebula, part of the larger Carina Nebula. Credit: NASA/The Hubble Heritage Team (AURA, STScI)

Then there’s the Wishing Well Cluster (aka. NGC 3532), an open cluster in Carina. Approximately 1,321 light years distant, the cluster is composed of about 150 stars that appear through a telescope like silver coins twinkling at the bottom of a wishing well. The cluster lies between the constellation Crux (the Southern Cross) and the False Cross asterism in Carina and Vela, and was first object observed by the Hubble Space Telescope in May 1990.

Finding Carina:

Carina is the 34th largest constellation in the sky, occupying an area of 494 square degrees. It lies in the second quadrant of the southern hemisphere (SQ2) and is visible at latitudes between +20° and -90° and is best seen during the month of March. Before you even begin with a telescope or binoculars, be sure to stop and just take a good look at Alpha Carinae – Canopus.

Canopus is essentially white when seen with the naked eye (though F-type stars are sometimes listed as “yellowish-white”). The spectral classification for Canopus is F0 Ia (Ia meaning “bright supergiant”), and such stars are rare and poorly understood; they are stars that can be either in the process of evolving to or away from red giant status. This in turn made it difficult to know how intrinsically bright Canopus is, and therefore how far away it might be.

Since the Milky Way runs through Carina, there are a large number of open clusters in the constellation, making it a binocular observing paradise. NGC 2516 is a magnitude 3.1 open cluster originally discovered by Abbe Lacaille in 1751 with a 1/2″ spyglass. This gorgeous 30 arc minute spread of stars is also known as Caldwell 96 and graces many observing lists, including the Astronomical League Open Cluster, Deep Sky and Southern Observing Clubs.

Location of the Carina Constellation in the southern skies. Credit: IAU/Sky&Telescope magazine

It is commonly known as the “Southern Beehive Cluster” (for it does resemble northern Messier 44) and it contains about 100 stars the brightest of which is an fifth magnitude red giant that lies near the center. As far as stellar age goes, this star cluster is very young – only about 140 million years old!

Now hop to IC 2602, popularly known as the “Southern Pleiades” for is resemblance to northern Messier 45. This galactic cluster contains more than 50 stars and is approximately 500 light years away from Earth. At its heart is blue-white star Theta Carinae, and it can be found by forming a triangle in the sky with Beta and Iota Carinae. With a stellar magnitude of 2.0, this object is easily seen as a nebulous patch to the unaided eye!

Another nebula that can been seen unaided but is better in binoculars is the Homunculus, an emission nebula surrounding the massive star Eta Carinae. The nebula is embedded within a much larger H II region, the Eta Carinae Nebula. Even though Eta Carinae is about 7,500 light-years away, structures only 10 billion miles across (about the diameter of our solar system) can be distinguished.

Dust lanes, tiny condensations, and strange radial streaks all appear with unprecedented clarity. Excess violet light escapes along the equatorial plane between the bipolar lobes. While there is relatively little dusty debris between the lobes down by the star; most of the blue light is able to escape. The lobes, on the other hand, contain large amounts of dust which absorb blue light, causing the lobes to appear reddish.

The gas pillar in the Carina Nebula, known as the “Mystic Mountain”. Credit: NASA/ESA/M. Livio and the Hubble 20th Anniversary Team (STScI)

The Eta Carinae Nebula, or NGC 3372 itself is fascinating. It is a hypergiant luminous blue variable star in the Carina constellation, one of the most massive stars yet discovered. Because of its mass and the stage of life, it is expected to explode in a supernova in the “near” future. Stars in the stellar mass class of Eta Carinae, with more than 100 times the mass of the Sun, produce more than a million times as much light as the Sun.

They are quite rare — only a few dozen in a galaxy as big as the Milky Way. They are assumed to approach (or potentially exceed) the Eddington limit, i.e., the outward pressure of their radiation is almost strong enough to counteract gravity. Stars that are more than 120 solar masses exceed the theoretical Eddington limit, and their gravity is barely strong enough to hold in their radiation and gas.

Now hop just three degrees away to NGC 3532 – known as the “Wishing Well Cluster”. This open star cluster is one of the jewels of the southern sky and is also referred to as Caldwell 91 and is on many observing lists. Want another? Try globular cluster NGC 2808, also known as Bennett 41. Beautiful NGC 2808 is a fine example of a symmetrical and strongly compressed globular cluster.

Viewable in binoculars and totally resolvable in a 6″ telescope, this is another of Dreyer’s remarkable objects described as very large extremely rich, and gradually reaching an extremely condensed status in the middle. NGC 2808 contains thousands of magnitude 13-15 stars!

The NGC 2808 star cluster, Credit: NASA, ESA, A. Sarajedini (University of Florida) and G. Piotto (University of Padova)

For double star fans, take on Epsilon Carinae, also known by the name Avior. Epsilon Carinae is a binary star located 630 light years away from our solar system. The primary component is a dying orange giant of spectral class K0 III, and the secondary is a hot hydrogen-fusing blue dwarf of class B2 V. The stars regularly eclipse each other, leading to brightness fluctuations on the order of 0.1 magnitudes.

Now try Upsilon Carinae – part of the Diamond Cross asterism in southern Carina. It’s name is Vathorz Prior, a name of Old Norse-Latin origin meaning “Preceding One of the Waterline”. Located approximately 1623 light years from Earth, the star system is made of two components. Upsilon Carinae A, is a white A-type supergiant with an apparent magnitude of +3.01 while its companion, Upsilon Carinae B, is a blue-white B-type giant 5 arc seconds away.

But no constellation would be complete without a true telescope challenge. Planetary nebula NGC 3211 (RA 10h 17m 50.4s Dec -62° 40´ 12″) heralds in at about 12th magnitude. For even more fun, try NGC 2867 (R.A. 09h 21m 25.3s Dec. -58° 18′ 40.7″). You’ll find it about a degree north/northeast of Iota. Iota Carinae. NGC 2867 may be no more than 2,750 years old.

Strangely, it is one of only a few dozen objects known to have a Wolf-Rayet star (type WC6) as its central star. NGC 2867 was discovered by John Herschel from Felhausen observatory at the Cape of Good Hope on April’s Fools Day, 1834 – appropriate since Herschel was almost fooled into thinking it was a new planet. Its size and appearance were certainly planet-like and it was only after careful checking that Herschel was convinced it was a nebula.

The NGC 3247 nebur. Credit NASA/JPL-Caltech/E. Churchwell (University of Wisconsin)

Now try NGC 3247 (RA 10 : 25.9 Dec -57 : 56 ). This is a very cool, very small galactic cluster with associated nebulosity. At around magnitude 8, you won’t find the rich little cluster much of a problem, but use minimal magnifcation to appreciate the true field!

While at the telescope, also look up NGC 3059 (9 : 50.2 Dec -73 : 55). Now, we’ve got a spiral galaxy cutting its way through the dust of the Milky Way! With an apparent magnitude of 12, and a 3.2 arc minute diameter, this barred spiral galaxy is going to present a nice, unique challenge to southern hemisphere observers.

There are myriad other things to look at in Carina as well, so don’t see this lovely constellation short! There is also a meteor shower associated with the constellation of Carina, too. The Eta Carinids are a lesser known meteor shower lasting from January 14 to 27 each year. The activity peaks on or about January 21. It was first discovered in 1961 in Australia. Roughly two to three meteors occur per hour at its maximum. It gets its name from the radiant which is close to the nebulous star Eta Carinae.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.

Source:

The Big Dipper in the Year 92,000

If we could transport Ptolemy, a famous astronomer who lived circa 90 – 168 A.D. in Alexandria, Egypt, he would have noticed the shift in position of Arcturus, Sirius and Aldebaran since his time. Everything else would appear virtually unchanged.
If we could transport Ptolemy, a famous astronomer who lived circa 90 – 168 A.D. in Alexandria, Egypt, he would have noticed the shift in position of Arcturus, Sirius and Aldebaran since his time. Everything else would appear virtually unchanged.

You go out and look at the stars year after year and never see any of them get up and walk away from their constellations. Take a time machine back to the days of Plato and Socrates and only careful viewing would reveal that just three of the sky’s naked eye stars had budged: Arcturus, Sirius and Aldebaran. And then only a little. Their motion was discovered by Edmund Halley in 1718 when he compared the stars’ positions then to their positions noted by the ancient Greek astronomers. In all three cases, the stars had moved “above a half a degree more Southerly at this time than the Antients reckoned them.”

NGC 4414 is a spiral galaxy that resembles our own Milky Way. I've drawn in the orbits of several stars. Both disk and halo stars orbit about the center but halo stars describe long elliptical orbits. When they plunge through the disk, if they happen to be relatively nearby as is Arcturus, they'll appear to move relatively quickly across the sky. Credit: NASA/ESA
NGC 4414 is a spiral galaxy that resembles our own Milky Way. I’ve drawn in the orbits of several stars. Both disk and halo stars orbit about the center, but halo stars describe long elliptical orbits that take them well beyond the disk. When a star plunges through the disk, if it happens to be relatively nearby as in the case of Arcturus, the star will appear to move relatively quickly across the sky. Both distance and the type of orbit a star has can affect how fast it moves from our perspective. Credit: NASA/ESA with orbits by the author

Stars are incredibly far away. I could throw light years around like I often do here, but the fact is, you can get a real feel for their distance by noting that during your lifetime, none will appear to move individually. The gems of the night and our sun alike revolve around the center of the galaxy. At our solar system’s distance from the center — 26,000 light years or about halfway from center to edge — it takes the sun about 225 million years to make one revolution around the Milky Way.

That’s a LONG time. The other stars we see on a September night take a similar length of time to orbit. Now divide the average lifetime of some 85 years into that number, and you’ll discover that an average star moves something like .00000038% of its orbit around the galactic center every generation. Phew, that ain’t much! No wonder most stars don’t budge in our lifetime.

This graphic, compiled using SkyMap software created by Chris Marriott, shows the motion of Arcturus over
This graphic, made using SkyMap software created by Chris Marriott, shows the motion of Arcturus over a span of 8,000 years.

Sirius, Aldebaran and Arcturus and several other telescopic stars are close enough that their motion across the sky becomes apparent within the span of recorded history. More powerful telescopes, which expand the scale of the sky, can see a great many stars amble within a human lifetime. Sadly, our eyes alone only work at low power!

Precession of Earth's axis maintains it usual 23.5 degree tilt, but this causes the axis to describe a circle in the sky like a wobbling top. Credit: Wikimedia Commons
Precession of Earth’s axis maintains its usual 23.5 degree tilt, but this causes the axis to describe a circle in the sky like a wobbling top. The photo is an animation that repeats 10 seconds, so hang in there. Credit: Wikimedia Commons

But we needn’t invest billions in building a time machine to zing to the future or past to see how the constellation outlines become distorted by the individual motions of the stars that compose them. We already have one! Just fire up a free sky charting software program like Stellarium and advance the clock. Like most such programs, it defaults to the present, but let’s look ahead. Far ahead.

If we advance 90,000 years into the future, many of the constellations would be unrecognizable. Not only that, but more locally, the precession of Earth’s axis causes the polestar to shift. In 2016, Polaris in the Little Dipper stands at the northernmost point in the sky, but in 90,000 years the brilliant star Vega will occupy the spot. Tugs from the sun and moon on Earth’s equatorial bulge cause its axis to gyrate in a circle over a period of about 26,000 years. Wherever the axis points defines the polestar.

I advanced Stellarium far enough into the future to see how radically the Big Dipper changes shape over time. Notice too that Vega will be the polestar in that distant era. Map: Bob King, Source: Stellarium
I advanced Stellarium far enough into the future to see how radically the Big Dipper changes shape over time. Notice too that Vega will be the polestar in that distant era. Map: Bob King, Source: Stellarium

Take a look at the Big Dipper. Wow! It’s totally bent out of shape yet still recognizable. The Pointer Stars no longer quite point to Polaris, but with some fudging we might make it work. Vega stands near the pole, and being much closer to us than the rest of Lyra’s stars, has moved considerably farther north, stretching the outline of the constellation as if taffy.

Now let's head backwards in time 92,000 years to 90,000 B.C. The Dipper then was fairly unrecognizable, with both Vega and Arcturus near the pole. Map: Bob King , Source: Stellarium
Now let’s head backwards in time 92,000 years to 90,000 B.C. The Dipper then was fairly unrecognizable, with both Vega and Arcturus near the pole. Map: Bob King , Source: Stellarium

Time goes on. We look up at the night sky in the present moment, but so much came before us and much will come after. Constellations were unrecognizable in the past and will be again in the future. In a fascinating discussion with Michael Kauper of the Minnesota Astronomical Society at a recent star party, he described the amount of space in and between galaxies as so enormous that “we’re almost not here” in comparison. I would add that time is so vast we’re likewise almost not present. Make the most of the moment.

Messier 6 – The Butterfly Cluster

Welcome back to Messier Monday! We continue our tribute to our dear friend, Tammy Plotner, by looking at Messier 6, otherwise known as NGC 6405 and the Butterfly Cluster. Enjoy!

In the late 18th century, Charles Messier was busy hunting for comets in the night sky, and noticed several “nebulous” objects. After initially mistaking them for the comets he was seeking, he began to compile a list of these objects so other astronomers would not make the same mistake. Known as the Messier Catalog, this list consists of 100 objects, consisting of distant galaxies, nebulae, and star clusters.

This Catalog would go on to become a major milestone in the history of astronomy, as well as the study of Deep Sky Objects. Among the many famous objects in this catalog is M6 (aka. NGC 6405), an open cluster of stars in the constellation of Scorpius. Because of its vague resemblance to a butterfly, it is known as the Butterfly Cluster.

Continue reading “Messier 6 – The Butterfly Cluster”

The Aquarius Constellation

Welcome back to Constellation Friday! Today, we will be dealing with one of the best-known constellations, that “watery” asterism and section of the sky known as Aquarius. Cue the soundtrack from Hair!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the-then known constellations. This work (known as the Almagest) would remain the definitive guide to astronomy and astrology for over a thousand years. Among the 48 constellations listed in this book was Aquarius, a constellation of the zodiac that stretches from the celestial equator to the southern hemisphere.

Also known as the “Water Carrier”, Aquarius is bordered by Pegasus, Equuleus and Delphinus at the north, Aquila to the west, Capricornus to the south-west, Piscis Austrinus and Sculptor to the south, Cetus to the east and Pisces to the north-east. Today, it is one of the 88 constellations recognized by the International Astronomical Union (IAU), and is perhaps the most referenced and recognized of all the constellation.

Continue reading “The Aquarius Constellation”

The Apus Constellation

Welcome back to Constellation Friday! Today, we will be dealing with the beautiful bird-of-paradise itself, the Apus constellation!

The Southern Hemisphere is replete with beautiful stars and constellations, enough to keep a stargazing enthusiast busy for a lifetime. For countless centuries, the indigenous peoples of South America, South Africa, Australia and the South Pacific have looked up at these stars and drawn inspiration. However, to European astronomers, they remained uncharted and unknown until the 16th century.

It was during this time that Flemish astronomer Petrus Plancius designated twelve constellations, using asterisms found in the southern skies. One such constellation was Apus, a faint constellation in the southern sky that is named for the bird-of-paradise – a beautiful bird that is indigenous to the South Pacific. Today, it is one of the 88 constellations defined by the International Astronomic Union (IAU).

Name and Meaning:

The name Apus is derived from Greek word apous, which literally means “no feet”. The name applies to a species of bird that is indigenous to Indonesia, Papua New Guinea, and Eastern Australia (which was believed at one time to have no feet). Its original name on Plancius’ charts was “Apis Indica” – the Latin term for “Indian Bee” (presumably an error for “avis”, which means bird).

Because of this error, the bordering constellation of Musca was later separated and renamed. The neighboring constellations to Apus are Ara, Chamaeleon, Circinus, Musca, Octans, Pavo, and Triangulum Australe.

The Constellation Apus. Credit: iau.org
The Constellation Apus. Credit: iau.org

History of Observation:

This faint southern constellation of Apus was one of the original twelve created by Plancius, based on observations provided by Pieter Dirkszoon Keyser and Frederick de Houtman – two Dutch explorers/navigators who mapped the southern sky around Australia between 1595 and 1597.

It was included on a celestial globe published in 1597 or 1598 in Amsterdam by Plancius and his associate, Flemish cartographer and engraver Jodocus Hondius. After it’s introduction on Plancius’ globe, it also appeared in Uranometria, a star atlas published by Johann Bayer – a German celestial catrographer – in 1603.

Here, it appeared under the name “Apis Indica”. It also grouped with the other members of the “Johann Bayer family” of constellations, all of which appeared in Uranometria. These include Chamaeleon, Dorado, Grus, Hydrus, Indus, Musca, Pavo, Phoenix, Tucana, and Volans. The constellation also appears as part of the Chinese constellations, where it is known as the “Little Wonder Bird”.

In the 17th century, Ming Dynasty astronomer Xu Guangqi adapted the European southern hemisphere constellations when producing The Southern Asterisms. Combining Apus with some of the stars in Octans, he designated the stars in this area of the night sky into the constellation known as Yìquè (“Exotic Bird”). In 1922, Apus was included by the International Astronomical Union in the list of 88 constellations.

The southern constellation Apus and neighboring Deep Sky Objects. Credit: absoluteaxarquia.com
The southern constellation Apus and neighboring Deep Sky Objects. Credit: absoluteaxarquia.com

Notable Features:

Within the Apus constellation, there are 39 stars that are brighter than or equal to apparent magnitude 6.5. The most notable of these is Alpha Apodis. an orange giant star with a magnitude of 3.8, located roughly 411 light years away from Earth. Beta Apodis is also an orange giant, with a magnitude of 4.2. and located 158 light years from Earth. And Gamma Apodis , another orange giant, has a magnitude of 3.9 and is located 160 light years away.

Delta Apodis is a binary star system consisting of a red giant and an orange giant. Delta¹ has a magnitude of 4.7 and is located 765 light years away, while Delta² has a magnitude of 5.3 and is located 663 light years away. Then there is Theta Apodis, a variable red giant star with a maximum magnitude of 4.8 and a minimum of 6.1 that is located 328 light years away.

NO Apodis is a red giant that varies between magnitudes 5.71 and 5.95 and is located around 883 light-years away from Earth. This star shines with a luminosity that is approximately 2059 times greater than our Sun’s and has a surface temperature of 3568 K.

Apus is also home to a few Deep Sky Objects. These include the IC 4499 loose globular cluster (shown below), which is located in the medium-far galactic halo and has an apparent magnitude of 10.6. This object is rather unique in that its metallicity readings indicate that it is younger than most other globular clusters in the region.

This new NASA/ESA Hubble Space Telescope image shows the globular cluster IC 4499. Globular clusters are big balls of old stars that orbit around their host galaxy. It has long been believed that all the stars within a globular cluster form at the about same time, a property which can be used to determine the cluster's age. For more massive globulars however, detailed observations have shown that this is not entirely true — there is evidence that they instead consist of multiple populations of stars born at different times. One of the driving forces behind this behaviour is thought to be gravity: more massive globulars manage to grab more gas and dust, which can then be transformed into new stars. IC 4499 is a somewhat special case. Its mass lies somewhere between low-mass globulars, which show a single generation build-up, and the more complex and massive globulars which can contain more than one generation of stars. By studying objects like IC 4499 astronomers can therefore explore how mass affects a cluster's contents. Astronomers found no sign of multiple generations of stars in IC 4499 — supporting the idea that less massive clusters in general only consist of a single stellar generation. Hubble observations of IC 4499 have also helped to pinpoint the cluster's age: observations of this cluster from the 1990s suggested a puzzlingly young age when compared to other globular clusters within the Milky Way. However, since those first estimates new Hubble data been obtained, and it has been found to be much more likely that IC 4499 is actually roughly the same age as other Milky Way clusters at approximately 12 billion years old. Credit: ESA/NASA/HST
NASA/ESA Hubble Space Telescope image of the globular cluster IC 4499, located in the Apus constellation. Credit: ESA/NASA/HST

Then there’s NGC 6101, a 14th mangitude globular cluster located seven degree north of Gamma Apodis. Last, there is the spiral galaxy IC 4633, which is very faint due to its location well within the Milky Way’s nebulous disc.

Finding Apus:

For binoculars, take a look at Alpha Apodis. This 3.8 magnitude star is located 411 light years away from Earth. Now move on to Delta. It is a wide double star which is two orange 5th-magnitude members separated by 103 arc seconds and an easy split. Or try observing Theta – its a variable star whose brightness ranges from magnitude 4.8 to 6.1 in a period of 109 days.

For telescopes, take a look at more difficult binary star Kappa-1 Apodis. The brightest component of this disparate pair has a magnitude of 5.4 and the companion is 12th magnitude, 27 arcseconds away. Need more? Then turn your gaze towards Kappa-2 only 0.63 degrees from Kappa-1. Kappa-1 Apodis is a binary star approximately 1020 light years from Earth. The primary component, Kappa-1 Apodis A, is a blue-white B-type subgiant with a mean apparent magnitude of +5.40. It is classified as a Gamma Cassiopeiae type variable star and its brightness varies from magnitude +5.43 to +5.61. The companion star, Kappa-1 Apodis B, is a 12th magnitude orange K-type subgiant. It is 27 arc seconds from the primary.

For larger telescopes, wander off and look at NGC 6101 located about seven degrees north of Gamma. Here we have a small, 14th magnitude globular cluster! If you’re really good you can try for spiral galaxy IC 4633. It’s so faint it doesn’t even have a magnitude listing!

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?, Triangulum Australe, What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations. and the Students for the Exploration and Development of Space page on Apus and Constellation Families.

The Andromeda Constellation

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of the then-known 48 constellations. His treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come. Thanks to the development of modern telescopes and astronomy, this list was amended by the early 20th century to include the 88 constellation that are recognized by the International Astronomical Union (IAU) today.

Of these, Andromeda is one of the oldest and most widely recognized. Located north of the celestial equator, this constellation is part of the family of Perseus, Cassiopeia, and Cepheus. Like many constellation that have come down to us from classical antiquity, the Andromeda constellation has deep roots, which may go all the way back to ancient Babylonian astronomy.

Continue reading “The Andromeda Constellation”