NEOWISE Spots Mars-Crossing Comet

NASA's NEOWISE Mission takes aim at Comet A1 Siding Spring on January 16th, 2014 when the comet was 571 million kilometres distant. Credit: NASA/JPL-Caltech

One of the big ticket astronomical events of 2014 will be the close passage of Comet C/2013 A1 Siding Spring past the planet Mars in October 2014. Discovered just over a year ago from the Australian-based Siding Spring Observatory, this comet generated a surge of excitement in the astronomical community when it was discovered that it was going to pass very close to the planet Mars in late 2014.

Now, a fleet of spacecraft are poised to study the comet in unprecedented detail. Some of the first space-based observations of the comet have been conducted by NASA’s Hubble Space Telescope and the recently reactivated NEOWISE mission. And although the comet may not look like much yet in the infrared eyes of NEOWISE, its estimated 4 kilometre in diameter nucleus is already active and shedding about 100 kilograms of dust per second.

And although an impact has been since ruled out, it’s that dust that may present a hazard for Mars orbiting spacecraft, as well as a unique scientific observing opportunity.

“Our plans for using spacecraft at Mars to observe Comet A1 Siding Spring will be coordinated with plans for how the orbiters will duck and cover, if we need to do so that,” said NASA/JPL Mars Exploration Program chief scientist Rich Zurek.

The 2014 passage of Comet A1 Siding Spring through the inner solar system. Credit: NASA/JPL-Caltech
The 2014 passage of Comet A1 Siding Spring through the inner solar system. Credit: NASA/JPL-Caltech

Comet A1 Siding Spring is projected to pass within just 138,000 kilometres of Mars on October 19th, 2014. This is one-third the Earth-Moon distance, and 10 times closer than the closest recorded passage of a comet by the Earth, which was Comet D/1770 Lexell in the late 18th century. The comet will also miss the Martian moons of Phobos and Deimos, which have the closest orbits of any moons in the solar system at just 5,989 and 20,063 kilometres above the surface of Mars, respectively.

Assets in orbit around the Red Planet are also slated to observe the close approach and passage of Comet A1 Siding Spring, as well as any extraterrestrial meteor shower that its dust may generate.

“We could learn about the nucleus – its shape, its rotation, whether some areas on its surface are darker than others,” Zurek said in a recent NASA/JPL press release.

The rovers Curiosity and Opportunity are currently active on the surface of Mars. Above in orbit, we’ve got the European Space Agency’s Mars Express, and NASA’s Mars Odyssey and the Mars Reconnaissance Orbiter (MRO).  These will be joined by India’s Mars Orbiter Mission and NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft just weeks prior to the comet’s passage.

“A third aspect for investigation could be what effect the infalling particles have on the upper atmosphere of Mars,” Zurek said. “They might heat it and expand it, not unlike the effect of a global dust storm.”

Just last year, Mars based spacecraft caught sight of the ill-fated sungrazer Comet C/2012 S1 ISON as it passed Mars. But that dim passage yielded a scant pixel-sized view in the eyes of MRO’s HiRISE camera; Comet A1 Siding Spring will pass 80 times closer than Comet ISON and could yield a view of its nucleus dozens of pixels across.

Though the tenuous Martian atmosphere will shield to surface rovers from any micro-meteoroid impacts, they may also be witness to a surreptitious meteor shower from the debris shed by the comet, a first seen from the surface of another world.

But engineers will also be assessing the potential hazards that said particles may posed to spacecraft orbiting Mars as well.

“It’s way too early for us to know how much of a threat Siding Spring will be to our orbiters,” said JPL’s Mars Exploration Program chief engineer Soren Madsen recently. “It could go either way. It could be a huge deal or it could be nothing – or anything in between.”

In a worst case scenario, Mars orbiting spacecraft would be shuttered and oriented to “shelter in place” as the dust from the comet passes. There’s precedent for this in Earth orbit, as precious assets such as the Hubble Space Telescope were closed for business during the Leonid meteor storm of 1998.

“How active will Siding Spring be in April and May? We’ll be watching that,” Madsen continued. “But if the red alarm starts sounding in May, it would be too late to start planning how to respond. That’s why we’re doing what we’re doing right now.”

Comet A1 Siding Spring was the first comet discovered in 2013 at 7.2 Astronomical Units (AUs) distant. From our Earth based perspective, the comet will reach opposition on August 25th at 0.96 AU from the Earth, and approach 7’ from Mars on October 19th in the constellation Ophiuchus in evening skies. The comet reaches perihelion just 4 days later, and is slated to be a binocular comet around that time shining at magnitude +8.

The comet nucleus itself is moving in a retrograde orbit relative to Mars. Particles from A1 Siding Spring will slam into the atmosphere of Mars — and any spacecraft that happens to be in their way — at a velocity of 56 kilometres per second. For context, the recent January Quadrantids have a more sedate atmospheric impact velocity of 41 kilometres a second.

The unfolding 2014 drama of “Mars versus the Comet” will definitely be worth keeping an eye on… more to come!

Rosetta Is Happily Awake, But Comet Lander Will Slumber Until March

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

Now that Rosetta has (leisurely) arose from a 31-month slumber in space, the next step is to figure out how prepared the spacecraft is for its close encounter with a comet. Early indications show that the orbiting spacecraft is ready to go. Its lander, Philae, is still asleep and the plan isn’t to wake it up until March, ESA added.

In the initial wake-up stage for Rosetta, “We were most concerned about power, and seeing if the solar arrays were generating sufficient electricity to support the planned recommissioning activities,” stated Andrea Accomazzo, spacecraft operations manager. “But even though we were still 673 million km [418 million miles] from the Sun , we were getting enough power and the arrays appear to have come through hibernation with no degradation.”

An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko.  Credit: Astrium - E. Viktor/ESA
An artist concept of the Philae lander on comet 67P/Churyumov-Gerasimenko. Credit: Astrium – E. Viktor/ESA

Other systems are happily coming online as planned. Three of the four reaction wheels, which control Rosetta’s position in space, are working perfectly (with the fourth expected to be reactivated in a few weeks.) Next up is making sure Rosetta’s memory storage is working well enough to shelve science and operations information, and pinning down the spacecraft’s orbit.

So Rosetta is doing well after 31 months. With that hurdle leapt, technicians will begin to think about waking up Philae and making sure that its 10 instruments are working. By February, you can follow updates regularly on the Rosetta blog (as well as on Universe Today, of course!)

Rosetta should reach Comet 67P/Churyumov-Gerasimenko in August, and will start snapping pictures of the comet in May if all goes to plan. Astronomers are eager to see what the comet will teach us about the early years of the solar system, since comets are considered leftovers of when our neighborhood formed.

Source: ESA

Lovejoy and X1 LINEAR: How to See Comets That Will Warm Up Your Mid-Winter Mornings

Comet Lovejoy still shows both an ion tail (blue) and dust tail in this photo taken Jan. 12 from Stixendorf, Austria. Credit: Michael Jaeger

My hands are still cold from the experience, but there’s no denying the pleasure I felt at seeing C/2013 R1 Lovejoy and C/2012 X1 LINEAR through the telescope this morning.  Some comets fizzle, others fall apart, but these vaporous hunks have hung in there for months like steadfast friends that stick with you through hard times and good.While no longer visible with the naked eye, 50mm binoculars easily show it as a magnitude 7 fuzzy glow with a short, faint tail pointing up and away to the northwest.  I had no difficulty seeing it even with a last quarter moon glaring in the south.

Comets Lovejoy and X1 LINEAR are both moving across northern Ophiuchus. This map shows the sky facing east about 1 hour 45 minutes before sunrise shortly before the start of morning twilight. Detailed map below. Stellarium
Comets Lovejoy and X1 LINEAR are neighbors in northern Ophiuchus this month and next. This map shows the sky facing east about 1 hour 45 minutes before sunrise shortly before the start of morning twilight. Tick marks show the comets’ position every 5 days. Click to enlarge. Detailed map below. Created with Chris Marriott’s SkyMap software.

Rising around 3 a.m., Lovejoy is best placed for viewing just before the start of dawn when it climbs to about 30 degrees altitude in Ophiuchus. Lucky for us, Lovejoy will spend the next few mornings very close to the easy naked eye star 72 Ophiuchi, located 3 fists held at arm’s length to the lower right of brilliant Vega. It’s not often that a fairly bright comet passes this close to a helpful guide star. Don’t miss this easy catch. Soon the moon won’t be any trouble either as it skedaddles eastward and dwindles to a crescent in the coming mornings.

This deeper map shows stars to about magnitude 8. Although both comets appear to be getting lower every morning, the seasonal drift of the star to the west will keep them in good view for the next few months. Stellarium
This deeper map shows stars to about magnitude 8. Although both comets appear to be getting lower every morning, the westward seasonal drift of the stars will keep them in good view for the next few months. Click to enlarge. Created with Chris Marriott’s SkyMap software

Telescopic views of Lovejoy show a much diminished coma and tail compared to its heyday in early December. Still,  the nucleus remains bright and very condensed within the 3′ diameter gauzy coma; a faint and silky tail 2/3 of a degree long flowed across the field of view of my 15-inch (37-cm) reflector like a bride’s train. According to the excellent Weekly Information about Bright Comets site maintained by Seiichi Yoshida, Lovejoy should glow brighter than magnitude 8, what I consider the “bright” comet cutoff, through early February. Given that Lovejoy remains the brightest predicted comet visible till summer, show it some love the next clear night.

Comet C/2012 X1 LINEAR shows a green coma from fluorescing gases and a short tail in this photo made on Jan. 15, 2014. Credit: Rolando Ligustri
Comet C/2012 X1 LINEAR shows a green coma from fluorescing gases and a short tail in this photo made on Jan. 15, 2014. Credit: Rolando Ligustri

If Lovejoy’s a fading celebrity, X1 LINEAR suffered a mid-life crisis and snapped out of it with a whole new attitude.  Like Comet Holmes in 2007, it catapulted in brightness overnight in last October, blossoming from a 14th magnitude blip into a bright, expanding puffball briefly visible in ordinary binoculars. As expected, the comet soon faded. But on its return to obscurity,  X1 surprised again, re-brightening and growing a short tail. Now it’s humming along at 9th magnitude thank you very much. You’ll find it gliding across northern Ophiuchus not far from Lovejoy (more about that in a minute).

Very different appearance of C/2012 X1 LINEAR during outburst on Oct. 21, 2013. Credit: Ernesto Guido, Martino Nicolini & Nick Howes
Very different appearance of C/2012 X1 LINEAR during outburst on Oct. 21, 2013. Credit: Ernesto Guido, Martino Nicolini & Nick Howes

My binoculars won’t show the comet but a 6-inch telescope will do the trick. Overall weaker in appearance than Lovejoy, X1 LINEAR has a slightly larger, more diffuse coma,  brighter core and a short, faint tail pointing to the northwest. The comet will remain a fine target for smaller scopes through early March when it’s predicted to glow between magnitude 8 and 9.

Comets Lovejoy and X1 LINEAR will be closest together on the morning of Feb. 6 CST. Notice that they'll be in the company of numerous deep sky objects. Looks like a morning's worth of observing to me! Created with Chris Marriott's SkyMap software
Comets Lovejoy and X1 LINEAR will be closest together on the morning of Feb. 6 CST. A plethora of deep sky objects near them will make  for a complete morning’s worth of sky watching! Click to enlarge. Created with Chris Marriott’s SkyMap software

Looking at the maps, you’ll see that our two comets’ paths intersect. While they won’t overlap on the same morning, Lovejoy and X1 LINEAR will be in conjunction on Feb. 6 when they’ll be just 2 degrees apart. Get that camera ready! Guided telephoto and wide-field telescopes will be perfect for catching this unusual duet.

Before I sign off, don’t forget all the other good morning stuff: Mars hovers above Spica high in the south-southwestern sky, Saturn invites inspection in the southeast and Venus is back in view in the east-southeast 45 minutes before sunup. A delicate crescent moon shines near Venus on Jan. 28 and 29. Such riches.

After A Long Nap, NEOWISE Springs Into Action With Asteroid Discoveries

Dots (circled) in this image show the first asteroid spotted by NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) after the mission came out of hibernation. Credit: NASA

If anything, NASA’s asteroid-hunting spacecraft seems to be refreshed after going into forced hibernation for 2.5 years. In the first 25 days since it started seeking small solar system bodies in earnest again, the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) found three new objects and detected an additional 854, NASA said Thursday (Jan. 23).

Luckily for people interested in this field, Amy Mainzer (the principal investigator for this mission) has been tweeting out discoveries as they come — and other observations besides. “Just passed our @WISE_Mission post-restart review. I believe the technical term is “Yee haw!!” she wrote Jan. 21. Below are a couple of illustrated examples of discoveries from her Twitter feed. Click on the pictures for larger versions.

2014 AA53 NEOWISE

2014 AQ46 NEOWISE

In a release, NASA added that NEOWISE is “observing and characterizing” one NEO a day, which means not only looking at the object, but probing its size and composition. Astronomers know of about 10,500 NEOs, but of those only 10% (or about 1,500) have physical measurements cataloged as well. NEOWISE investigators aim to make hundreds of more of these measurements.

The mission (originally called WISE) launched in December 2009 to examine the universe in infrared light. After completely mapping the sky, it ran out of coolant it needed to do this work in 2010. It then shifted to examining comets and asteroids before being put into hibernation in February 2011. Read more about its mission history in this past Universe Today article.

Rosetta Wakes Up, Phones Home, Starts Tweeting

The Rosetta team at ESA’s space operations center in Darmstadt reacts after receiving a signal from the spacecraft. Credit: ESA.

The silence from the live video feed from the ESA’s space operations center in Darmstadt, Germany was almost deafening. Scientists and engineers were waiting to receive a signal from the Rosetta spacecraft, which was supposed to come out of hibernation today to begin its mission to Comet 67P/Churyumov-Gerasimenko in earnest. Finally, after waiting nearly 45 minutes into the window of time when the spacecraft was supposed to send a signal, a little blip appeared on the screens of the spectrum analyzers and the room erupted in cheers.

Data monitors from Rosetta showing the signal received back on Earth from the spacecraft. Credit: ESA.
Data monitors from Rosetta showing the signal received back on Earth from the spacecraft. Credit: ESA.

“After waiting over two and a half years, what is three-quarters of an hour!” said Fred Jansen, ESA’s Rosetta mission manager. “The spacecraft is there, it’s awake and the science team knows there are two busy years ahead of them. Now we have to work hard. Thanks to the team that achieved this.”

“I think I can speak on behalf of everyone here and everyone on Twitter: that was rather stressful!” said Matt Taylor, Rosetta project scientist. “The work begins now and I think we’ll have a fun-filled two years ahead, so let’s get on it!”

Soon after the signal arrived, the mission Twitter feed came alive, Tweeting “Hello World” in multiple languages.

Later in the day, as the team checked out the spacecraft, everything appeared in order and working well as systems began to start operating:

Rosetta was placed into hibernation in June 2011, with only the computer and several heaters remaining active as the spacecraft cruised out to nearly 800 million km from the warmth of the Sun, beyond the orbit of Jupiter.

Today, as Rosetta’s orbit came back to within 673 million km from the Sun, there was enough solar energy to power the spacecraft fully again and Rosetta’s pre-programmed internal ‘alarm clock’ woke up the spacecraft after a record 957 days of hibernation. After warming up its key navigation instruments, coming out of a stabilizing spin, and aiming its main radio antenna at Earth, Rosetta sent a signal to let mission operators know it had survived the most distant part of its journey.

The signal was received by NASA’s Goldstone ground station in California at 18:18 GMT during the first window of opportunity the spacecraft had to communicate with Earth.

The one-way light time on today, January 20, 2014 between Rosetta and Earth was about 44 minutes and 53 seconds over a distance of 807,224,610.74 km. Rosetta was about 9,188,540 km from the comet, closing up at about 800 m/second.

“This was one alarm clock not to hit snooze on, and after a tense day we are absolutely delighted to have our spacecraft awake and back online,” said Jansen.

Comets are considered the primitive building blocks of the Solar System and perhaps may have helped to ‘seed’ Earth with water, or even the ingredients for life. But many fundamental questions about these enigmatic objects remain, and through its comprehensive, in situ study of Comet 67P/Churyumov-Gerasimenko, Rosetta aims to unlock the secrets contained within.

“All other comet missions have been flybys, capturing fleeting moments in the life of these icy treasure chests,” said Taylor. “With Rosetta, we will track the evolution of a comet on a daily basis and for over a year, giving us a unique insight into a comet’s behavior and ultimately helping us to decipher their role in the formation of the Solar System.”

But first, essential health checks on the spacecraft must be completed. Then the eleven instruments on the orbiter and ten on the lander will be turned on and prepared for studying Comet 67P/Churyumov-Gerasimenko.

“We have a busy few months ahead preparing the spacecraft and its instruments for the operational challenges demanded by a lengthy, close-up study of a comet that, until we get there, we know very little about,” says Andrea Accomazzo, Rosetta operations manager.

Rosetta’s first images of 67P/Churyumov-Gerasimenko are expected in May, when the spacecraft is still 2 million km from its target. Towards the end of May, the spacecraft will execute a major maneuver to line up for its critical rendezvous with the comet in August.

After rendezvous, Rosetta will start with two months of extensive mapping of the comet’s surface, and will also make important measurements of the comet’s gravity, mass and shape, and assess its gaseous, dust-laden atmosphere, or coma. The orbiter will also probe the plasma environment and analyse how it interacts with the Sun’s outer atmosphere, the solar wind.

Using these data, scientists will choose a landing site for the mission’s 100 kg Philae probe. The landing is currently scheduled for November 11, 2014 and will be the first time that a landing on a comet has ever been attempted.

With almost negligible gravity from the comet’s 4 km-wide nucleus, Philae will have to use ice screws and harpoons to stop it from rebounding back into space after touchdown.

Among its wide range of scientific measurements, Philae will send back a panorama of its surroundings, as well as very high-resolution pictures of the surface. It will also perform an on-the-spot analysis of the composition of the ices and organic material, including drilling down to 23 cm below the surface and feeding samples to Philae’s on-board laboratory for analysis.

The focus of the mission will then move to the ‘escort’ phase, during which Rosetta will stay alongside the comet as it moves closer to the Sun, monitoring the ever-changing conditions on the surface as the comet warms up and its ices sublimate.

Rosetta will follow the comet throughout the remainder of 2015, as it heads away from the Sun and activity begins to subside.

You can read the team’s blog about the “wake up” here, and find out more about the Rosetta mission here.

Here’s a replay of the acquisition of signal:

Wake Up, Rosetta!

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.


It’s being called “the most important alarm clock in the Solar System” —  this Monday, January 20, at 10:00 GMT (which is 5:00 a.m. for U.S. East Coasters like me) the wake-up call will ring on ESA’s Rosetta spacecraft, bringing it out of hibernation after over two and a half years in preparation of its upcoming and highly-anticipated rendezvous with a comet.

The wake-up will incite the warming of Rosetta’s star trackers, which allow it to determine its orientation in space. Six hours later its thrusters will fire to stop its slow rotation and ensure that its solar arrays are receiving the right amount of sunlight. Using its thawed-out star trackers Rosetta will aim its transmitter towards Earth and, from 500 million miles (807 million km) away, will send a thumbs-up signal that everything is OK and it’s time to get back to work.

From that distance the transmission will take 45 minutes to reach us. Rosetta’s first signal is expected between 17:30 – 18:30 GMT (12:30 – 1:30 p.m. ET). Once we’re assured all is well, Rosetta has a very exciting year ahead!

After nearly a decade of soaring through the inner solar system, flying past Mars and Earth several times and even briefly visiting a couple of asteroids (2867 Steins on September 5, 2008 and 21 Lutetia on July 10, 2010) Rosetta is finally entering the home stretch of its mission to orbit the 4-km-wide comet 67P/Churyumov-Gerasimenko.

Once Rosetta enters orbit around the comet — the first time a spacecraft has ever done so — it will map its surface and, three months later in November, deploy the 220-lb (100-kg) Philae lander that will intimately investigate the surface of the nucleus using a suite of advanced science instruments. (Watch a video here of how all this will happen… using Legos!)

Read more: Spider-Like Spacecraft Aims To Touch A Comet Next Year After Rosetta Reactivates

With Philae firmly attached to the comet, Rosetta will follow it around the Sun as it makes its closest pass in August 2015 and then heads back out towards the orbit of Jupiter. Rosetta will provide the most detailed observations ever of a comet’s composition and dramatic evolution as it encounters the heat and energy of our home star.

Of course, before all this can happen Rosetta first has to… WAKE UP! It entered hibernation in July 2011 and has remained silent in a slow spin ever since, with only its computer and some heaters kept running. Waking up from a 31-month nap can’t be easy, so ESA is inviting people around the world to help Wake Up Rosetta (and possibly even win a trip to Germany for the landing in November) by sharing their short movies of how best to awaken a sleeping spacecraft and sharing them to the contest page on Facebook or to Twitter, Vine, or Instagram with the #WakeUpRosetta hashtag.

See more about the contest below:

Video submissions to the Wake Up Rosetta video contest will be accepted until 17:30 GMT on Monday so if you haven’t already, get your cameras out and your imaginations going… this spacecraft isn’t going to wake itself! (Well, actually it kinda is but you can still show off your creativity!)

And even if you don’t send in a video, you can watch the live feed of Monday’s events from ESA starting at 09:15 GMT (4:15 a.m. ET) here and here. (Also follow @ESA_Rosetta on Twitter — currently it’s “still sleeping.”)

Want to find out where Rosetta is right now? Check out this cool interactive map from Daniel Scuka, Senior Editor of Spacecraft Operations at ESOC.

Rosetta launched on March 2, 2004 by an Ariane-5 G+ from Europe’s spaceport in Kourou, French Guiana. Read more on the mission page and the Rosetta blog here.

___________

UPDATE Jan. 20: Rosetta has awoken! This afternoon at 18:18 UTC, after 48 minutes of increasingly tense anticipation, a signal from the spacecraft was received by both NASA’s Deep Space Network in Goldstone, CA and the ground station in Canberra, Australia. Rosetta is up and running and so far seems to be in good condition — Go Rosetta and Philae! Read the full story here.

A Possible Meteor Shower from Comet ISON?

Credit-Stellarium

Hey, remember Comet C/2012 S1 ISON? Who can forget the roller-coaster ride that the touted “Comet of the Century” took us on last year. Well, ISON could have one more trick up its cosmic sleeve –although it’s a big maybe — in the form of a meteor shower or (more likely) a brief uptick in meteor activity this week.

In case you skipped 2012 and 2013, or you’re a time traveler who missed their temporal mark, we’ll fill you in on the story thus far.

Comet ISON was discovered by Artyom Novichonok and Vitali Nevski on September 21st, 2012 as part of the ongoing International Scientific Optical Network (ISON) survey. Shortly after its discovery, researchers knew they had spotted something special: a sungrazing comet already active at over 6.4 Astronomical Units (A.U.s) from the Sun. The Internet then did what it does best, and promptly ran with the story. There were no shortage of Comet ISON conspiracy theories for science writers to combat in 2013. It’s still amusing to this day to see predictions for comet ISON post-perihelion echo through calendars, almanacs and magazines compiled and sent to press before its demise.

ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico
ISON back in the day. Credit-Efrain Morales Rivera, Jaicoa Observatory Aguadilla, Puerto Rico

The frenzy for all things ISON reached a crescendo on U.S. Thanksgiving Day November 28th 2013, as ISON passed just 1.1 million kilometres from the surface of the Sun. Unfortunately, what emerged was a sputtering ember of the comet formerly known as ISON, which faded from view just as it was slated to reenter the dawn sky.

Hey, we were crestfallen as well… we had our semi-secret dark sky site pre-selected for ISON imaging post-perihelion and everything. Despite heroic searches by ground and space-based assets, we’ve yet to see any compelling recoveries of Comet ISON post-perihelion.

This week, however, Comet ISON may put on its last hurrah, in the form of a minor meteor shower. We have to say from the outset that we’re highly skeptical that an “ISON-id meteor outburst” will grace the skies. Known annual showers are fickle enough, and it’s nearly impossible to predict just what might happen during a meteor shower with no past track record.

But you won’t see anything if you don’t try. If anything is set to occur, the night of January 15th into the 16th might just be the time to watch. This is because the Earth will cross the orbital plane of ISON’s path right around 9:00 PM EST/2:00 UT. Last year, ISON passed within 3.3 million kilometres of the Earth’s orbit on its inbound leg. Earlier last year, ISON was estimated to have been generating a prodigious amount of dust, at a rate of about 51,000 kilograms per minute. Any would-be fragments of ISON outbound would’ve passed closest to the Earth at 64 million kilometres distant on the day after Christmas last year. Veteran sky observer Bob King wrote about the prospects for catching ISON one last time during this month back in December 2013.

Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.
A simulation showing Earth crossing the plane of Comet ISON’s orbit early on January 16th. Credit: NASA/JPL Solar System Dynamics Small Body Database Browser.

Another idea out there that is even more unlikely is the proposal that dust from Comet ISON may generate an uptick in noctilucent cloud activity. And already, a brief search of the internet sees local news reports attempting to tie every meteor observed to ISON this week, though no conclusive link to any observed fireball has been made.

The radiant to watch for any possible “ISON-ids” sits near the +3.5 magnitude star Eta Leonis in the sickle of Leo. Robert Lundsford of the American Meteor Society notes in a recent posting that any ISON-related meteors would pass through our atmosphere at a moderate 51 kilometres a second, with a visible duration of less than one second.

Note that meteor activity has another strike against it, as the Moon reaches Full on the same night. In fact, the Full Moon of Wednesday January 15th sits in the constellation Gemini,just 32 degrees away from the suspect radiant!

Another caveat is in order for any remaining dooms-dayers: no substantial fragments of ISON are (or ever were) inbound and headed towards our fair planet. Yes, we’re seeing rumblings to this effect in the pseudoscience netherworlds of ye ole Internet, along with ideas that ISON secretly survived, NASA “hid” ISON, ISON cloaked like a Romulan Bird of Prey, you name it. Just dust grains, folks… a good show perhaps, but nothing more.

As near as we can tell, talk of a possible meteor shower generated from Comet ISON goes all the way back to a NASA Science News article online from April 2013. Radio observers of meteor showers should be alert for a possible surge in activity this week as well, and it may be the case that more radio “pings” will be noted than visual activity what with the light-polluting Full Moon in the sky. The radiant for any would-be “ISON-ids” transits highest in the sky for northern hemisphere observers at around 2 AM local.

But despite what it has going against it, we’d be thrilled if ISON put on one last show anyhow. It’s always worth watching for meteor activity and noting the magnitude and from whence the meteor came to perhaps note the pedigree as to the shower it might belong to.

The next annual dependable meteor shower won’t be until the night of April 21st to the 22nd, when the Spring Lyrids are once again active. And this year may just offer a special treat on May 24th, when researchers have predicted that the Earth may encounter debris streams laid down by Comet 209P LINEAR way back in 1803 and 1924… Camelopardalids, anyone? Now, that’s an exotic name for a meteor shower that we’d love to see trending!

-Catch sight of any “ISON-ids?” we’d love to see ‘em… be sure to post said pics at Universe Today’s Flickr pool.

 

 

Can You Help Wake Up a Spacecraft?

An artist's conception of ESA's Rosetta and Philae spacecraft approaching comet 67P/Churyumov-Gerasimenko. (Credit: ESA-J. Huart, 2013)

On January 20, 2014 it will be time for the snoozing Rosetta spacecraft to awaken from 31 months of hibernation. Through an online contest, ESA has been looking for a little help in sending a wake-up call to the spacecraft, which will be 673 million kilometers from Earth. The “Wake Up Rosetta!” video contest has yielded some heartwarming, funny, and creative videos from families, school children and more. Here are a few of our favorites, and you can go to the contest’s Facebook page to find out how to submit your own video, as well as see more videos and vote for your favorite.

The top ten vote-getting videos will be transmitted out to Rosetta via one of ESA’s deep-space tracking stations, and there are additional prizes as well, including the top two video creators will be invited to the control center in Darmstadt, Germany for when the Philae lander attempts landing on comet 67P/Churyumov–Gerasimenko in November 2014 after latching on with a harpoon.

ESA themselves have come up with a video story of the Rosetta mission and how it will be awakened:

Find out more about Rosetta’s mission here, and the contest here.

Comets Prospects for 2014: A Look Into the Crystal Ball

Comet C/2013 R1 Lovejoy starts the new year as the brightest comet in the sky at around magnitude 6. In this photo taken on Dec. 31, two tails are visible. The longer one is the ion or gas tail; the broader fan is the dust tail. Credit: Damian Peach

As 2014 opens, most of the half dozen comets traversing the morning and evening sky are faint and require detailed charts and a good-sized telescope to see and appreciate. Except for Comet Lovejoy. This gift to beginner and amateur astronomers alike keeps on giving. But wait, there’s more. Three additional binocular-bright comets will keep us busy starting this spring.

Track of Comet C/2013 R1 Lovejoy in the morning sky marked at 3-day intervals shortly before the start of dawn (6 a.m. local time) tomorrow through Jan. 31. Stars shown for Dec. 29 to magnitude 5.8. Her = Hercules and Oph = Ophiuchus. Click to enlarge. Created with Chris Marriott's SkyMap software
Track of Comet C/2013 R1 Lovejoy in the morning sky marked at 3-day intervals shortly before the start of dawn (6 a.m. local time) tomorrow through Jan. 31. Stars shown for Dec. 29 to magnitude 5.8. Her = Hercules and Oph = Ophiuchus. Click to enlarge. Created with Chris Marriott’s SkyMap software

Still glowing around the naked eye limit at magnitude 6, the Lovejoy remains easy to see in binoculars from  dark skies as it tracks from southern Hercules into Ophiuchus in the coming weeks.

The best time to view the comet is shortly before the start of dawn when it sails highest in the eastern sky at an altitude of around 30 degrees or “three fists” up from the horizon. By January’s end, the comet will still be 25 degrees high in a dark sky. My last encounter with Lovejoy was a week ago when 10×50 binoculars revealed a bright coma and 1.5 degree long tail to the northwest. Through the telescope the stark contrast between bright, compact nucleus and gauzy coma struck me as one of the most beautiful sights I’d seen all month.

Path of Comet C/2012 K1 PANSTARRS this spring when it should be a nice comet for small to medium sized telescopes. Created with Chris Marriott's SkyMap software
Path of Comet C/2012 K1 PANSTARRS this spring when it should be a nice comet for small to medium sized telescopes. Created with Chris Marriott’s SkyMap software

Looking ahead to 2014 there are at present three comets beside Lovejoy that are expected to wax bright enough to see in binoculars and possibly with the naked eye: C/2012 K1 PanSTARRSC/2013 V5 Oukaimeden and C/2013 A1 Siding Spring  The first lurks in Hercules but come early April should bulk up to magnitude 9.5, bright enough to track in a small telescope for northern hemisphere observers. Watch K1 PANSTARRS amble from Bootes across the Big Dipper and down through Leo from mid-spring through late June hitting magnitude 7.5 before disappearing in the summer twilight glow. K1 will be your go-to comet during convenient viewing hours.

Come early September after K1 PANSTARRS leaves the sun’s ken, it reappears in the morning sky, traveling westward from Hydra into Puppis. Southern hemisphere observers are now favored, but northerners won’t suffer too badly. The comet is expected to crest to magnitude 5.5  in mid-October just before it dips too far south for easy viewing at mid-northern latitudes.

Comet Oukaimeden may glow around 8th magnitude in late August 2014 when it rises with the winter stars before dawn. Stellarium.
Comet Oukaimeden may glow around 8th magnitude in late August 2014 when it rises with the winter stars before dawn. Stellarium.

Comet C/2013 V5 (Oukaimeden), discovered November 15 at Oukaimeden Observatory in Marrekesh, Morocco. Preliminary estimates place the comet at around magnitude 5.5 in mid-September. It should reach binocular visibility in late August in Monoceros the Unicorn east of Orion in the pre-dawn sky before disappearing in the twilight glow for mid-northern latitude observers. Southern hemisphere skywatchers will see the comet at its best and brightest before dawn in early September and at dusk later that month.

Comet C/2013 A1 Siding Spring is currently a faint 14th magnitude object in Eridanus. Photo taken on Dec. 30, 2013. Credit: Rolando Ligustri
Comet C/2013 A1 Siding Spring is currently a faint 14th magnitude object in Eridanus. Photo taken on Dec. 30, 2013. Credit: Rolando Ligustri

2014’s most anticipated comet has to be  C/2013 A1 Siding Spring, expected to reach magnitude 7.5 and become binocular-worthy for southern hemisphere skywatchers as it traverses the southern circumpolar constellations this September. Northerners will have to wait until early October for the comet to climb into the evening sky by way of Scorpius and Sagittarius. Watch for an 8th magnitude hazy glow in the southwestern sky at that time.

As October ticks by, A1 Siding Spring creeps closer and closer to Mars until it overlaps the planet on the 19th. Normally, a comet will only appear to pass in front of stars and deep sky objects because it’s in the same line of sight. Not this time. Siding Spring may actually “touch” Mars for real.

Comet C/2013 A1 Siding Spring will overlap Mars on October 19, 2014. With the planet at magnitude
Comet C/2013 A1 Siding Spring will overlap Mars on October 19, 2014. Assuming magnitude 8 at the time, the comet should look like a hazy glow around the planet through binoculars and telescopes. Stellarium

On October 19 the comet will pass so close to the planet that its outer coma or atmosphere may envelop Mars and spark a meteor shower. The sight of a bright planet smack in the middle of a comet’s head should be something quite wonderful to see through a telescope.

While the list of predicted comets is skimpy and arguably not bright in the sense of headliners like Hale-Bopp in 1997 or even L4 PANSTARRS from last spring,  all should be visible in binoculars from a dark sky site.

Every year new comets are discovered, some of which can swiftly brighten and put on a great show like Comet Lovejoy (discovered Sept. 7) did last fall and continues to do. In 2013, 64 new comets were found, 14 of them by amateur astronomers. Comets with the potential to make us ooh and aah are out there –  we just have to find them.

The Quadrantid Meteor Shower-One of the Best Bets for 2014

The modern radiant of the Quadrantid meteor shower. (Photo and grahpics by author).

If there’s one thing we love, it’s a good meteor shower from an obscure and defunct constellation.

Never heard of the Quadrantids?  It may well be because this brief but intense annual meteor shower occurs in the early days of January. Chilly temps greet any would be meteor watchers with hardly the balmy climes of showers such as the August Perseids. Still, 2014 presents some good reasons to brave the cold in the first week of January, to just possibly catch the best meteor shower of the year.

The Quadrantids – sometimes simply referred to as “the Quads” in hipster meteor watcher inner circles – peak on January 3rd around 19:30 Universal Time (UT) or 2:30 PM Eastern Standard Time (EST). This places the northern Asia region in the best position to watch the show, though all northern hemisphere observers are encouraged to watch past 11 PM local worldwide. Remember: meteor showers are fickle beasties, with peak activity often arriving early or late. The Quadrantids tie the December Geminids for the highest predicted Zenithal Hourly Rate (ZHR) for 2014 at 120.

A 2012 Quadrantid meteor in the bottom left side of the frame. (Photo by Author).
A 2012 Quadrantid meteor in the bottom left side of the frame. (Photo by Author).

Though the Quads are active from January 1st to the 10th, the enhanced peak only spans an average of six to ten hours. Though high northern latitudes have the best prospects, we’ve seen Quads all the way down in  the balmy January climes of Florida from around 30 degrees north.

Rates for the Quads are typically less than 10 per hour just a day prior to the sharp peak. The moonless mornings of Friday, January 3rd and Saturday, January 4th will be key times to watch. The radiant for the Quads stands highest just hours before local sunrise.

So, what’s up with the unwieldy name? Well, the Quadrantids take their name from a constellation that no longer exists on modern star charts. Along with the familiar patterns such as Leo and Orion, exist such archaic and obscure patterns as “The Printing Office” and the “Northern Fly” that, thankfully, didn’t make the cut. Quadrans Muralis, or the Mural Quadrant, established by Jérome de Lalande in the 1795 edition of Fortin’s Celestial Atlas was one such creation.  A mural quadrant was a large arc-shaped astronomical tool used for measuring angles in the sky. Apparently, Renaissance astronomers were mighty proud of their new inventions, and put immortalized them in the sky every chance they got as sort of the IPhone 5’s of their day.

The outline of the Mural Quadrant against the backdrop of modern day constellations. (Photo and graphic by author).
The outline of the Mural Quadrant against the backdrop of modern day constellations. (Photo and graphic by author).

The Mural Quadrant spanned the modern day constellations of Draco, Hercules and Boötes. The exact radiant of the Quads lies at Right Ascension 15 Hours 18’ and declination 49.5 degrees north, in the modern day constellation Boötes just 15 degrees east of the star Alkaid.

Previous year’s maximum rates as per the IMO have been as follows:

2013: ZHR=129

2012: ZHR=83

2011: ZHR=90

2010: ZHR=No data (Bright waning gibbous Moon)

2009: ZHR=138

The parent source of the Quadrantids went unknown, until Peter Jenniskens proposed that asteroid 2003 EH1 is a likely suspect. Possibly an extinct comet, 2003 EH1 reaches perihelion at 1.2 AUs from the Sun in 2014 on March 12th, another reason to keep an eye on the Quads in 2014. 2003 EH1 is on a 5.5 year orbit, and it’s been proposed that the asteroid may have a connection to comet C/1490 Y1 which was observed and recorded by 15th century astronomers in the Far East.

The Quadrantids were first identified as a distinct meteor shower in the 1830s by European observers. Owing to their abrupt nature and their climax during the coldest time of the year, the Quadrantids have only been sporadically studied. It’s interesting to note that researchers modeling the Quadrantid meteor stream have found that it undergoes periodic oscillations due to the perturbations from Jupiter. The shower displays a similar orbit to the Delta Aquarids over a millennia ago, and researchers M. N. Youssef and S. E. Hamid proposed in 1963 that the parent body for the shower may have been captured into its present orbit only four thousand years ago.

The orbital path of Amor NEO asteroid 196256 2003 EH1. (Credit: NASA/JPL Solar System Dynamics Small-Body Database Browser).
The orbital path of Amor NEO asteroid 196256 2003 EH1. (Credit: NASA/JPL Solar System Dynamics Small-Body Database Browser).

2003 EH1 is set to resume a series of close resonnance passes of Earth and Jupiter in 2044, at which time activity from the Quads may also increase. It’s been proposed that the shower may fade out entirely by the year 2400 AD.

And the Quadrantids may not be the only shower active in the coming weeks. There’s been some discussion that the posthumous comet formerly known as ISON might provide a brief meteor display on or around the second week of January.

Be sure to note any meteors and the direction that they’re coming from: the International Meteor Organization and the American Meteor Society always welcomes any observations. Simple counts of how many meteors observed and from what shower (Quads versus sporadics, etc) from a given location can go a long way towards understanding the nature of this January shower and how the stream is continually evolving.

Stay warm, tweet those meteors to #Meteorwatch, and send those brilliant fireball pics in to Universe Today!