Revealed: Mars to Appear Larger Than a Full Moon!

We can finally reveal the truth.

A massive conspiracy, spanning over a decade, has been revealed at last by basement bloggers, YouTubers and Facebook users everywhere, implicating ‘big-NASA’ and the powers that be in a massive cover-up.

Yes, it’s the month of August once again, and the Red Planet Mars is set to appear ‘larger than a Full Moon’ over the skies of Earth, as it apparently does now… every year.

Um, no. Stop. Just… stop.

Sure, by now, you’ve had the hoax forwarded to you by that certain well-meaning, but astronomically uninformed family member/co-worker/anonymous person on Facebook.

What’s new under the Sun concerning the August Mars Hoax? To see where the hoax was born, we have to journey all the way back to the close opposition of Mars on August 27th, 2003. Hey, we actually took two weeks leave in the Fall of 2003 just to sketch and image Mars each night from our backyard lair in the Sonoran desert south of Tucson, Arizona from the then known Very Small Optical Observatory. Those were the days. We measured dial-up internet speeds in kbit/s, ‘burned CDs,’ and Facebook and Twitter were still some years away. Even spam e-mail was still sorta hip.

Two years later in 2005, we were all amused, as the ‘August Mars Hoax’ chain email made its first post-2003 appearance in our collective inboxes. Heck, we were even eager in those halcyon days to take to the nascent web, and do that new hipster thing known as ‘blogging’ to explain just exactly why this couldn’t be so to the masses.

Later in 2006, 2007, and 2008, it wasn’t so funny.

The Mars Hoax just wouldn’t die. “One more unto the breach,” the collective astro-blogging community sighed, as we all dusted off last year’s post explaining how the Red Planet could never approach our own fair world so closely.

It. Just. Couldn’t. Because orbital mechanics. Because physics.

Even the advent of social media couldn’t kill in annual onslaught of the Mars Hoax, and over a Spiderman movie reboot later, we’re now seeing it shared across Facebook, Twitter and more.

Sure, the Mars Hoax is as fake as Donald Trump’s hair. If there’s any true science lesson to learn here, it’s perhaps the mildly interesting social science study of just how the Mars hoax weathers the lean months of winter, to reemerge every August.

Here’s the skinny (again!) on just why Mars can’t appear as large as the Full Moon:

-The Moon is 3,474 kilometers in diameter, and orbits the Earth at an average distance of just under 400,000 kilometers.

-At this distance, the Moon can only appear about 30’ (half a degree) across.

-Think that’s a lot? Well, you could ring the 360 degree circle of the local horizon with 720 Full Moons.

-Mars, like the Earth, orbits the Sun. Even with Earth at aphelion (its most distant point) and Mars at perihelion, we’re still 206.7 – 151.9 = 54.8 million km apart. Sure, aphelion and perihelion of our respective worlds don’t quite line up in our current epochs, but we’ll indulge imagination and fudge things a bit.

-Though Mars is just over 2x times larger in diameter than the Moon, it’s also more than 143 times farther away, even at its said hypothetical closest.

Credit Dave Dickinson
Mars vs Earth; oppositions from 2003 to 2018, including perihelion and aphelion positions. Image credit: Dave Dickinson

-Still want to see Mars as big as a Full Moon? Perhaps one day, astronauts will, though they’ll have to be orbiting just over a 800,000 km from the Red Planet to do it.

If we sound a little pessimistic in our characterizing the Mars Hoax as a recurring non-story, it’s because we see many truly fantastic things in space news that get far from their far shake. Real stories, of collapsing stars, rogue exoplanets, and intrepid rovers exploring distant worlds. Tales of humanoids, exploring space and doing the very best and noble things humanoids as a species can do.

Want to trace the history the Mars Hoax?

Here’s the saga of Universe Today’s coverage of all things ‘Mars Hoax’ since those olden days of the early web:

2005- No, Mars Won’t Look as Big as the Moon

2006- No, Mars Won’t Look as Big as the Moon in August

2007- Will Mars Look as Big as the Moon on August 27? Nope

2008- Please (Again) – Mars Will NOT Look as Big as the Full Moon

2009- Mars Will NOT Look as Big as the Full Moon… But You Can Watch it Get Closer

2010- Tonight’s the Night Mars Will NOT Look as Big as the Full Moon

2011- Is the Moon Mars Myth Over?

2013- The Cyber Myth that Just Won’t Die

2016- ????

Hey, it looks like the hoax did take a break in 2012 and 2014, so that’s encouraging at least…

The great Mars opposition of 2003. image credit: Dave Dickinson
The great Mars opposition of 2003. Image credit: Dave Dickinson

Now, I’m going to do my best to truly terrify all of science blogger-dom, and leave you with one final thought to consider. Mars reaches opposition (otherwise known in astronomical circles as ‘when it’s really nearest to the Earth’) once roughly every 26 months. All oppositions of Mars are not created equal, owing mostly to the eccentric orbit of the Red Planet. We have another fine opposition of Mars coming right up next year on May 22nd, 2016, followed by one that’s very nearly as favorable as the historic 2003 opposition in 2018, falling juuuuust shy of August on July 28th of that year…

Will the Mars Hoax meme find a new unwitting audience, and with it, new life?

Sleep tight…. we’ll be covering real science stories in the meantime, ’til we’re called to do battle with the Mars Hoax once again.

Naming Pluto: Christening Features on Brave New Worlds

‘Here be Dragons…’ read the inscriptions of old maps used by early seafaring explorers. Such maps were crude, and often wildly inaccurate.

The same could be said for our very understanding of distant planetary surfaces today. But this week, we’ll be filling in one of those ‘terra incognita’ labels, as New Horizons conducts humanity’s very first reconnaissance of Pluto and its moons.

The closest approach for New Horizons is set for Tuesday, July 14th at 11:49 UT/7:49 AM EDT, as the intrepid spacecraft passes 12,600 kilometres (7,800 miles) from Pluto’s surface. At over 4 light hours or nearly 32 astronomical units (AUs) away, New Horizons is on its own, and must perform its complex pirouette through the Pluto system as it cruises by at over 14 kilometres (8 miles) a second.

This also means that we’ll be hearing relatively little from the spacecraft on flyby day, as it can’t waste precious time pointing its main dish back at the Earth. With a downlink rate of 2 kilobits a second—think ye ole 1990’s dial-up, plus frozen molasses—it’ll take months to finish off data retrieval post flyby. A great place to watch a simulation of the flyby ‘live’ is JPL’s Eyes on the Solar System, along with who is talking to New Horizons currently on the Deep Space Network with DSN Now.

A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA's Eyes on the Solar System).
A snapshot of the current July 13th view of New Horizons as it nears Pluto. (Image credit: NASA’s Eyes on the Solar System).

Launched in 2006, New Horizons is about to join the ranks of nuclear-fueled explorers that have conducted first time reconnaissance of solar system objects.

Bob King also wrote up an excellent timeline of New Horizons events for Universe Today yesterday. Also be sure to check out the Planetary Society’s in-depth look at what to expect by Emily Lakdawalla.

Seems strange that after more than a decade of recycling the same blurry images and artist’s conceptions in articles, we’re now getting a new and improved shot of Pluto and Charon daily!

To follow the tale of Pluto is to know the story of modern planetary astronomy. Discovered in 1930 by American astronomer Clyde Tombaugh from the Lowell Observatory, Pluto was named by 11-year old Venetia Burney. Venetia just passed away in 2009, and there’s a great short documentary interview with her entitled Naming Pluto.

Blink comparitor
The blink comparitor Clyde Tombaugh used to discover Pluto, on display at the Lowell Observatory. Image Credit: David Dickinson

Fun fact: Historians at the Carnegie Institute recently found images of Pluto on glass plates… dated 1925, from five years before its discovery.

Despite the pop culture reference, Pluto was not named after the Disney dog, but after the Roman god of the underworld. Pluto the dog was not named in Disney features until late 1930, and if anything, the character was more than likely named after the buzz surrounding the newest planet on the block.

We’re already seeing features on Pluto and Charon in the latest images, such as the ‘heart,’ ‘donut,’ and the ‘whale’ of Pluto, along with chasms, craters and a dark patch on Charon. The conspicuous lack of large craters on Pluto suggests an active world.

The International Astronomical Union (IAU) convention for naming any new moons discovered in the Plutonian system specifies characters related to the Roman god Pluto and tales of the underworld.

Image credit:
Brake for New Horizons on July 14th… Image credit: David Dickinson

With features, however, cartographers of Pluto should get a bit more flexibility. Earlier this year, the Our Pluto campaign invited the public to cast votes to name features on Pluto and Charon related to famous scientists, explorers and more. The themes of ‘fictional explorers and vessels’ has, of course, garnered much public interest, and Star Trek’s Mr. Spock and the Firefly vessel Serenity may yet be memorialized on Charon. Certainly, it would be a fitting tribute to the late Leonard Nimoy. We’d like to see Clyde Tombaugh and Venetia Burney paid homage to on Pluto as well.

We’ve even proposed the discovery of a new moon be named after the mythological underworld character Alecto, complete with a Greek ‘ct’ spelling to honor Clyde Tombaugh.

The discovery and naming of Charon in 1978 by astronomer Robert Christy set a similar precedent. Christy choose the name of the mythological boatman who plied the river Styx (which also later became a Plutonian moon) as it included his wife Charlene’s nickname ‘Char.’ This shibboleth  also set up a minor modern controversy as to the exact pronunciation of Charon, as the mythological character is pronounced with a hard ‘k’ sound, but most folks (including NASA) say the moon as ‘Sharon’ in keeping with Christy’s in-joke that slipped past the IAU.

And speaking of Pluto’s large moon, someone did rise to the occasion and take our ‘Charon challenge,’ we posed during the ongoing Pluto opposition season recently. Check out this amazing capture of the +17th magnitude moon winking in and out of view next to Pluto courtesy of Wendy Clark:

Image credit
Click here to see the animation of the possible capture of Charon near Pluto. Image credit and copyright: Wendy Clark

Clark used the 17” iTelescope astrograph located at Siding Spring Observatory in Australia to tease out the possible capture of the itinerant moon.

Great job!

What’s in a name? What strange and wonderful discoveries await New Horizons this week? We should get our very first signal back tomorrow night, as New Horizons ‘phones home’ with its message that it survived the journey around 9:10 PM EDT/1:10 UT. Expect this following Wednesday—in the words of New Horizons principal Investigator Alan Stern—to begin “raining data,” as the phase of interpreting and evaluating information begins.

Image credit
The women who power the New Horizons mission to Pluto. Image credit: SwRI/JHUAPL

And there’s more in store, as the New Horizons team will make the decision to maneuver the spacecraft for a rendezvous with a Kuiper Belt Object (KBO) next month. Said KBO flyby will occur in the 2019-2020 timeframe, and perhaps, we’ll one day see a Pluto orbiter mission or lander in the decades to come…

Maybe one way journeys to ‘the other Red Planet’ are the wave of the future.’ Pluto One anyone?

Awesome New Radar Images of Asteroid 2004 BL86


New video of 2004 BL86 and its moon

Newly processed images of asteroid 2004 BL86 made during its brush with Earth Monday night reveal fresh details of its lumpy surface and orbiting moon. We’ve learned from both optical and radar data that Alpha, the main body, spins once every 2.6 hours. Beta (the moon) spins more slowly.

The images were made by bouncing radio waves off the surface of the bodies using NASA’s 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, Calif.  Radar “pinging” reveals information about the shape, velocity, rotation rate and surface features of close-approaching asteroids. But the resulting images can be confusing to interpret. Why? Because they’re not really photos as we know it.

For one, the moon appears to be revolving perpendicular to the main body which would be very unusual. Most moons orbit their primary approximately in the plane of its equator like Earth’s moon and Jupiter’s four Galilean moons. That’s almost certainly the case with Beta. Radar imagery is assembled from echoes or radio signals returned from the asteroid after bouncing off its surface. Unlike an optical image, we see the asteroid by reflected pulses of radio energy beamed from the antenna. To interpret them, we’ll need to put on our radar glasses.

Bright areas don’t necessarily appear bright to the eye because radar sees the world differently. Metallic asteroids appear much brighter than stony types; rougher surfaces also look brighter than smooth ones.  In a sense these aren’t pictures at all but graphs of the radar pulse’s time delay, Doppler shift and intensity that have been converted into an image.

Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory
Another set of images of 2004 BL86 and its moon. Credit: NAIC Observatory / Arecibo Observatory

In the images above, the left to right direction or x-axis in the photo plots the toward and away motion or Doppler shift of the asteroid. You’ll recall that light from an object approaching Earth gets bunched up into shorter wavelengths or blue-shifted compared to red-shifted light given off by an object moving away from Earth. A more rapidly rotating object will appear larger than one spinning slowly. The moon appears elongated probably because it’s rotating more slowly than the Alpha primary.

Meanwhile, the up and down direction or y-axis in the images shows the time delay in the reflected radar pulse on its return trip to the transmitter. Movement up and down indicates a change in 2004 BL86’s distance from the transmitter, and movement left to right indicates rotation. Brightness variations depend on the strength of the returned signal with more radar-reflective areas appearing brighter. The moon appears quite bright because – assuming it’s rotating more slowly – the total signal strength is concentrated in one small area compared to being spread out by the faster-spinning main body.

If that’s not enough to wrap your brain around, consider that any particular point in the image maps to multiple points on the real asteroid. That means no matter how oddly shaped 2004 BL86 is in real life, it appears round or oval in radar images. Only multiple observations over time can help us learn the true shape of the asteroid.

You’ll often notice that radar images of asteroids appear to be lighted from directly above or below. The brighter edge indicates the radar pulse is returning from the leading edge of the object, the region closest to the dish. The further down you go in the image, the farther away that part of the asteroid is from the radar and the darker it appears.

Imagine for a moment an asteroid that’s either not rotating or rotating with one of its poles pointed exactly toward Earth. In radar images it would appear as a vertical line!

If you’re curious to learn more about the nature of radar images, here are two great resources:

How Radio Telescopes Get “Images” of Asteroids by Emily Lakdawalla
* Goldstone Solar System Radar Observatory: Earth-Based Planetary Mission Support and Unique Science Results

News Flash: Asteroid Flying Past Earth Today Has Mini-Moon!

Wonderful news! Asteroid 2004 BL86, which passed closest to Earth today at a distance of 750,000 miles (1.2 million km), has a companion moon. Scientists working with NASA’s 230-foot-wide (70-meter) Deep Space Network antenna at Goldstone, California, have released the first radar images of the asteroid which show the tiny object in orbit about the main body.

While these are the first images of it, the “signature” of the satellite was seen in light curve data reported earlier by Joseph Pollock (Appalachian State University, North Carolina) and Petr Prave (Ondrejov Observatory, Czech Republic) according to Lance Benner who works with the radar team at Goldstone.

2004 BL86 measures about 1,100 feet (325 meters) across while its moon is approximately 230 feet (70 meters) across. The asteroid made its closest approach today (Jan. 26th) at 10:19 a.m. (CST), however it will peak in brightness this evening around 10 p.m. (4:00 UT) at magnitude +9.0. Unlike some flybys, 2004 BL86 will remain within a few tenths of a magnitude of peak brightness from 6 p.m. tonight (CST) through early tomorrow morning, so don’t miss the chance to see it in your telescope.

Don’t expect to see the diminutive moon visually – the entire system will only appear as a point of light, but I’m sure you’ll agree it’s cool just knowing it’s there.

The double asteroid (90) Antiope and S/2000 (90) 1. The two objects are separated by 171 km, and they perform their celestial dance in 16.5 hours. The adaptive optics observations could, however, never resolve the shape of the individual components as they are too small. Credit: ESO
The double asteroid (90) Antiope and its companion S/2000 (90) 1. The two objects are separated by 106 miles (171 km), and they perform their celestial dance in 16.5 hours. The adaptive optics observations couldn’t resolve the shape of the individual components as they are too small. Credit: ESO

Among near-Earth asteroids, about 16% that are about 655 feet (200 meters) or larger are either binary or triple systems. While that’s not what you’d call common, it’s not unusual either. To date, we know of 240 asteroids with a single moon, 10 triple systems and the sextuple system of Pluto (I realize that’s stretching a bit, since Pluto’s a dwarf planet) – 268 companions total. 52 of those are near-Earth asteroids.

With a resolution of 13 feet (4-meters) per pixel we can at least see the roughness of the the main body’s surface and perhaps imagine craters there. No details are visible on the moon though it does appear elongated. I’m surprised how round the main body is given its small size. An object that tiny doesn’t normally have the gravity required to crush itself into a sphere. Yet another fascinating detail needing our attention.

Of course the main asteroid will get your attention tonight. Please check out our earlier story on 2004 BL86 which includes more details as well as charts to help you track it as it flies across Cancer the Crab tonight. This is the best view we’re going to get of it for the next two centuries.

Comet Finlay Surprise Outburst, Visible in Binoculars … again!

Lost sleep at night, fingers tapping on the keyboard by day. Darn comets are keeping me busy! But of course that’s a good problem. Comet 15P/Finlay, which had been languishing in the western sky at dusk at magnitude +10, has suddenly come to life … for a second time.

Two nights ago, Australian comet observer Michael Mattiazzo took a routine picture of Finlay and discovered it at magnitude +8. Today it’s a magnitude brighter and now joins Comet Lovejoy as the second binocular comet of 2015. Comet-wise, we’ve gone from zero to 60 and the new year’s fewer than 3 weeks old!

Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius.
Comet 15P/Finlay tonight through Feb. 1. Positions shown for 7 p.m (CST) and stars depicted to magnitude +8. Tonight the comet will be right next to a 6th mag. star in Aquarius low in the southwestern sky at nightfall. Mars and Neptune’s position are for Jan. 17th. Click to enlarge. Source: Chris Marriott’s SkyMap software

Comet Finlay’s threw its first tantrum last December when it reached binocular visibility (faintly) shortly before Christmas.  Discovered by William Henry Finlay from South Africa on September 26, 1886, the comet circles the Sun every 6.5 years. This time around it reached perihelion on December 27th and spent many nights near the planet Mars low in the western sky. Until the new outburst, the comet had returned to its predicted brightness (~10 magnitude) and departed company with the Red Planet.

Even though photographed under poor conditions on Jan. 17th, Alfons Diepvens' image of Comet Finlay's coma and nuclear region reveals interesting details. Credit: Alfons Diepvens
Even though photographed under poor conditions on Jan. 17th, Belgian amateur astronomer Alfons Diepvens’ image of Comet Finlay’s coma and nuclear region reveals interesting details. Credit: Alfons Diepvens

It’s still low in the west, though not quite so much as in December, in the constellation Aquarius. With an orbit inclined only 6.8° to the ecliptic or plane of the Solar System, you’ll find it chugging eastward across the zodiac at the rate of 1° per night. The best time to view the comet is at the end of evening twilight at nightfall when it’s highest —  20° to 25° above the southwestern horizon.

Comet Lovejoy southwest of the beautiful Pleaides star cluster on January 15th. Credit: Bob King
Comet Lovejoy seen in tandem with the beautiful Pleaides star cluster on January 15th. Click for a finder chart. Credit: Bob King

Right now it’s not far from Lambda Aquarii and will soon glide just south of the well-known asterism called the “Circlet” in Pisces. Currently between 7th and 8th magnitude and showing a bright, condensed center, Comet Finlay is easily visible in 10×50 binoculars. Catch it while you can. These outbursts often fade fairly quickly. While we don’t know its exact cause, what likely happened is that a new fissure opened up on the comet’s surface, exposing fresh ice to sunlight. Rapid vaporization of the new material may be behind the eruption.

While Comet Q2 Lovejoy’s been getting all the attention, Finlay’s back in the game and making mid-January nights all that more enjoyable for sky gazing. Lovejoy is presently passing near the Pleiades star cluster in Taurus. This coming week will be the last dark one before the Moon starts to spoil the view. I hope you’re able to spot both at the next opportunity.

5-degree binocular view of Mars as it approaches Neptune in the next few nights. They'll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott's SkyMap software
5-degree binocular view of Mars as it approaches Neptune in the next few nights. They’ll be in close conjunction on the 19th. Mars shines at about 1st magnitude, Neptune at 8. Stars shown to mag. 9. Source: Chris Marriott’s SkyMap software

While we’re on the topic, take another look at the finder chart and you’ll see that Mars lies very near Neptune. The two are presently about 2° apart but on Monday Jan. 19th at dusk they’ll be separated by just 12 arc minutes or 1/5 of a degree and easily fit into the same medium-power view of a telescope. Pretty cool – and well worth seeing along with those comets!

Beagle 2: Found on Mars After An 11 Year Hunt

The final chapter in the saga of a wayward Mars lander was finally revealed today, as an international team released images showing the Beagle-2 lander’s final resting place on Mars.

Flashback to Christmas Day, 2003. While most folks gathered ‘round the tree and opened presents, the UK and European Space Agency awaited a gift from space.  The Beagle-2 Mars lander had been released from the European Space Agency’s Mars Express orbiter six days prior, and was coasting towards a perilous landing in Isidis Planitia and was set to phone home.

All was going according to plan, and then… silence.

It’s the worst part of any mission, waiting for a lander to call back and say that it’s safe and sound on the surface of another world. As the hours turned into days, anxious engineers used NASA’s Mars Odyssey spacecraft and the Lovell Telescope at Jodrell Bank to listen for the signal.

Beagle-2 was declared lost a few weeks later on February 6th, 2004.

But now, there’s a final twist to the tale to tell.

Beagle 2
Beagle 2, partially deployed on the Martian surface. Credit and Copyright: HiRISE/NASA/Leicester.

The UK Space Agency, working with ESA and NASA announced today that debris from the landing site had been identified and that indicates — contrary to suspicions — that Beagle-2 did indeed make it to the surface of the Red Planet intact. New images from the Mars Reconnaissance Orbiter released today suggest that not only did Beagle-2 land, but that its airbags did indeed deploy properly and that the dish-shaped 1-meter in diameter spacecraft partially unfolded pocket-watch style after it had bounced to a stop.

“We are very happy to learn that Beagle 2 touched down on Mars,” said ESA’s Director of Science and Robotic Exploration in a recent press release. “The dedication of the various teams in studying high-resolution images in order to find the lander is inspiring.”

So, what went wrong with Beagle-2?

At this point, no further speculation as to what caused the lander to fall silent has been forthcoming, but today’s revelation is sure to rewrite the final saga of Beagle-2.

“Not knowing what happened to Beagle-2 remained a nagging worry,” said ESA’s Mars Express project manager Rudolf Schmidt. “Understanding now that Beagle-2 made it all the way down to the surface is excellent news.”

Speculation swirled across the internet earlier this week as the UK Space Agency and ESA suggested that new information as to the fate of Beagle-2 was forthcoming, over 11 years after the incident. Back in 2004, it was suggested that Beagle-2 had encountered higher levels of dust in the Martian atmosphere than expected, and that this in turn resulted in a failure of the spacecraft’s parachutes. Presumably, the lander then failed to slow down sufficiently and crashed on the surface of Mars, the latest victim of the Great Galactic Ghoul who seems to love dining on human-built spacecraft bound for the Red Planet.

Credit: ESA
An artist’s conception of Beagle-2 fully deployed on Mars. Credit: ESA.

The loss of Beagle-2 wasn’t only a blow to the UK and ESA, but to its principal investigator Colin Pillinger as well. Pillinger was involved in the search for Beagle-2 in later years, and also played a part in the Rosetta mission to Comet 67P/Churyumov-Gerasimenko as well. Unfortunately, Pillinger passed away in May of last year from a brain hemorrhage. A portion of the western rim of Endeavour Crater currently being explored by Opportunity was named Pillinger Point in his honor.

Today’s announcement has triggered a wave of congratulations that the 11-year mystery has been solved. There have even been calls on Twitter and social media to rename the Beagle-2 site Pillinger Station.

“The history of of space exploration is marked by both success and failure,” Said Dr. David Parker, the Chief Executive of the UK Space Agency in a recent press release. “This finding makes the case that Beagle-2 was more of a success than we previously knew and undoubtedly an important step in Europe’s continuing exploration of Mars.”

Click here for the animated .gif version.
Evidence of the successful landing of Beagle-2. Click here for the animated .gif version. Credit: University of Leicester/Beagle 2/NASA/University of Arizona.

Beagle-2 is about 2 metres across unfurled, and came to rest within 5 kilometres of its target location.

There have been false announcements of the discovery of Beagle-2 before. Back in late 2005, a claim was made that the lander had been spotted by Mars Global Surveyor, though later searches came to naught.

“I can imagine the sense of closure that the Beagle-2 team must feel,” Said JPL’s MRO project scientist Richard Zurek in a recent press release. “MRO has helped find safe landing sites on Mars for the Curiosity and Phoenix missions and has searched for missing craft to learn what may have gone wrong. It’s an extremely difficult task.”

MRO entered orbit in March 2006 and carries a 0.5 metre in diameter HiRISE camera capable of resolving objects just 0.3 metres across on the surface of Mars.  The European Space Agency’s Mars Express orbiter that carried Beagle 2 is also still in operation, along with NASA’s aging Mars Odyssey spacecraft. These were joined in orbit by MAVEN and India’s Mars Orbiter just last year.

All rights reserved Beagle 2.
Beagle-2 encapsulated in the lab. All rights reserved, Beagle-2.

Of course, getting to Mars is tough, and landing is even harder. Mars has just enough atmosphere that you have to deal with it, but it’s so tenuous – 0.6% the surface pressure of Earth’s atmosphere at sea level – That it doesn’t provide a whole lot of usable drag.

To date, only NASA had successfully landed on Mars, and done it seven times – only the Mars Polar Lander failed back in 1999. The Russians fared much worse, with their most successful lander being Mars 3, which sent back only one blurry image before falling silent.

ESA and the Russian Federal Space Agency hope to amend that with the launch of the ExoMars mission next year, slated to land on Mars in 2018.

I remember waiting with millions of other space fans for word back from Beagle 2 on Christmas Day 2003. Think back to what your internet connection was like over 11 years ago, in an era before smart phones, Twitter and Facebook. We’d just come off of the spectacular 2003 Mars opposition season, which provided the orbital geometry ideal for launching a mission to the Red Planet. This window only comes around once every 26 months.

Though Beagle 2 was a stationary lander akin to the Viking and Mars Phoenix missions, it had a robotic arm and a clever battery of experiments, including ones designed to search for life. The signal it was supposed to use to call home was designed by the UK pop rock band Blur, a jingle that never came.

Alas, we’ll have to wait to see what the alien plains around Isidis Planitia actually look like, just 13 degrees north of the Martian equator. But hey, a lingering mystery of the modern age of planetary exploration was solved this week.

Still, we’re now left with a new dilemma. Does this mean we’ll have to write a sequel to our science fiction short story The Hunt for Beagle?

-Read free original science fiction from Dave Dickinson every Friday, including ongoing chapters from The Hunt for Beagle.

 

 

 

 

Ammonia Leak Alarm on the ISS Forces Evacuation of US Side, Crew Safe

Breaking News: A possible ammonia leak aboard the US side of the International Space Station (ISS) has forced a partial evacuation of the entire crew to the Russian side earlier this morning, Wednesday, Jan. 14.

All six crew members from the US, Italy and Russia are safe and in good shape at this time, says NASA and Roscosmos, the Russian Federal Space Agency.

Hatches between the US and Russian segments were sealed shut, pending further analysis.

Read my late day update – here.

Mission controllers are in the process of assessing whether it’s a real leak or a false alarm due to a faulty sensor or a computer problem. It’s not completely clear at this time.

The latest indications at 11 a.m. EST, Jan. 14, are that it may be a false alarm, says NASA.

“The security of a crew was guaranteed thanks to correct actions of the cosmonauts, astronauts and the crew of the Mission control centres in Moscow and Houston. Further plan of actions in the US modules must be prepared in Houston,” according to Roscosmos.

“For now NASA colleagues are analyzing situation”, – noted the head of Russian Mission Control Centre Maxim Matushin

Ammonia is a toxic substance used as a coolant in the stations complex cooling system that is an essential requirement to continued operation of the station.

There have been prior ammonia leaks aboard the ISS facility.

NASA announced that an alarm sounded in the US segment at about 4 a.m. EST. indicating a possible ammonia leak. As a result, all six Expedition 42 astronauts and cosmonauts evacuated the US segment.

“Flight controllers in Mission Control at NASA’s Johnson Space Center in Houston saw an increase in pressure in the station’s water loop for thermal control system B then later saw a cabin pressure increase that could be indicative of an ammonia leak in the worst case scenario,” according to a NASA announcement.

Therefore as a precaution after the alarm sounded earlier today, the crew was directed to isolate themselves in the Russian segment this morning while teams are evaluating the situation. The crew powered down non-essential equipment in the U.S. segment of the station according to established procedures, said NASA.

“In an exchange at 7:02 a.m. with Expedition 42 Commander Barry Wilmore of NASA, spacecraft communicator James Kelly said flight controllers were analyzing their data but said it is not yet known if the alarm was actually triggered by a leak or whether the situation was caused by a faulty sensor or by a problem in a computer relay box that sends data and commands to various systems on the station.”

The evacuation comes just two days after a commercial SpaceX Dragon cargo freighter successfully rendezvoused and berthed at the station on Monday, Jan. 11.

The SpaceX Dragon is attached to the Harmony module. Credit: NASA TV
This view shows the US side of the ISS that was evacuated today, Jan. 14, 2015, by the crew due to possible ammonia leak. The SpaceX CRS-5 Dragon is attached to the Harmony module. Credit: NASA TV

The ISS has been continuously occupied by humans for 15 years.

The current six person crew includes astronauts and cosmonauts from three nations; America, Russia and Italy including four men and two women serving aboard the massive orbiting lab complex.

They comprise Expedition 42 Commander Barry “Butch” Wilmore and Terry Virts from NASA, Samantha Cristoforetti from the European Space Agency (ESA) and cosmonauts Aleksandr Samokutyayev, Yelena Serova, and Anton Shkaplerov from Russia.

ISS Expedition 42. Credit: NASA/ESA/Roscosmos
ISS Expedition 42. Credit: NASA/ESA/Roscosmos

In the case of a life threatening emergency, the crew can rapidly abandon the station aboard the two docked Russian Soyuz capsules. They hold three persons each.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hearing the Early Universe’s Scream: Sloan Survey Announces New Findings

Imagine a single mission that would allow you to explore the Milky Way and beyond, investigating cosmic chemistry, hunting planets, mapping galactic structure, probing dark energy and analyzing the expansion of the wider Universe. Enter the Sloan Digital Sky Survey, a massive scientific collaboration that enables one thousand astronomers from 51 institutions around the world to do just that.

At Tuesday’s AAS briefing in Seattle, researchers announced the public release of data collected by the project’s latest incarnation, SDSS-III. This data release, termed “DR12,” represents the survey’s largest and most detailed collection of measurements yet: 2,000 nights’ worth of brand-new information about nearly 500 million stars and galaxies.

One component of SDSS is exploring dark energy by “listening” for acoustic oscillation signals from the the acceleration of the early Universe, and the team also shared a new animated “fly-through” of the Universe that was created using SDSS data.

The SDSS-III collaboration is based at the powerful 2.5-meter Sloan Foundation Telescope at the Apache Point Observatory in New Mexico. The project itself consists of four component surveys: BOSS, APOGEE, MARVELS, and SEGUE. Each of these surveys applies different trappings to the parent telescope in order to accomplish its own, unique goal.

BOSS (the Baryon Oscillation Spectroscopic Survey) visualizes the way that sound waves produced by interacting matter in the early Universe are reflected in the large-scale structure of our cosmos. These ancient imprints, which date back to the first 500,000 years after the Big Bang, are especially evident in high-redshift objects like luminous-red galaxies and quasars. Three-dimensional models created from BOSS observations will allow astronomers to track the expansion of the Universe over a span of 9 billion years, a feat that, later this year, will pave the way for rigorous assessment of current theories regarding dark energy.

At the press briefing, Daniel Eistenstein from the Harvard-Smithsonian Center for Astrophysics explained how BOSS requires huge volumes of data and that so far 1.4 million galaxies have been mapped. He indicated the data analyzed so far strongly confirm dark energy’s existence.

This tweet from the SDSS twitter account uses a bit of humor to explain how BOSS works:

APOGEE (the Apache Point Observatory Galactic Evolution Experiment) employs a sophisticated, near-infrared spectrograph to pierce through thick dust and gather light from 100,000 distant red giants. By analyzing the spectral lines that appear in this light, scientists can identify the signatures of 15 different chemical elements that make up the faraway stars – observations that will help researchers piece together the stellar history of our galaxy.

MARVELS (the Multi-Object APO Radial Velocity Exoplanet Large-Area Survey) identifies minuscule wobbles in the orbits of stars, movements that betray the gravitational influence of orbiting planets. The technology itself is unprecedented. “MARVELS is the first large-scale survey to measure these tiny motions for dozens of stars simultaneously,” explained the project’s principal investigator Jian Ge, “which means we can probe and characterize the full population of giant planets in ways that weren’t possible before.”

At the press briefing, Ge said that MARVELS observed 5,500 stars repeatedly, looking for giant exoplanets around these stars. So far, the data has revealed 51 giant planet candidates as well as 38 brown dwarf candidates. Ge added that more will be found with better data processing.

A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS -- just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.
A still photo from an animated flythrough of the universe using SDSS data. This image shows a small part of the large-scale structure of the universe as seen by the SDSS — just a few of many millions of galaxies. The galaxies are shown in their proper positions from SDSS data. Image credit: Dana Berry / SkyWorks Digital, Inc.

SEGUE (the Sloan Extension for Galactic Understanding and Exploration) rounds out the quartet by analyzing visible light from 250,000 stars in the outer reaches of our galaxy. Coincidentally, this survey’s observations “segue” nicely into work being done by other projects within SDSS-III. Constance Rockosi, leader of the SDSS-III domain of SEGUE, recaps the importance of her project’s observations of our outer galaxy: “In combination with the much more detailed view of the inner galaxy from APOGEE, we’re getting a truly holistic picture of the Milky Way.”

One of the most exceptional attributes of SDSS-III is its universality; that is, every byte of juicy information contained in DR12 will be made freely available to professionals, amateurs, and lay public alike. This philosophy enables interested parties from all walks of life to contribute to the advancement of astronomy in whatever capacity they are able.

As momentous as the release of DR12 is for today’s astronomers, however, there is still much more work to be done. “Crossing the DR12 finish line is a huge accomplishment by hundreds of people,” said Daniel Eisenstein, director of the SDSS-III collaboration, “But it’s a big universe out there, so there is plenty more to observe.”

DR12 includes observations made by SDSS-III between July 2008 and June 2014. The project’s successor, SDSS-IV, began its run in July 2014 and will continue observing for six more years.

Here is the video animation of the fly-through of the Universe:

New Finds From Kepler: 8 New Worlds Discovered in the Habitable Zone

A fascinating set of finds was announced today at the 225th meeting of the American Astronomical Society (AAS), currently underway this week in Seattle, Washington. A team of astronomers announced the discovery of eight new planets potentially orbiting their host stars in their respective habitable zones. Also dubbed the ‘Goldilocks Zone,’ this is the distance where — like the tempting fairytale porridge — it’s not too hot, and not too cold, but juuusst right for liquid water to exist.

And chasing the water is the name of the game when it comes to hunting for life on other worlds. Two of the discoveries announced, Kepler-438b and Kepler-442b, are especially intriguing, as they are the most comparable to the Earth size-wise of any exoplanets yet discovered.

“Most of these planets have a good chance of being rocky, like Earth,” said Guillermo Torres in a recent press release. Guillermo is the lead author in the study for the Harvard-Smithsonian Center for Astrophysics (CfA).

This also doubles the count of suspected terrestrial exo-worlds — planets with less than twice the diameter of the Earth — inferred to orbit in the habitable zone of their host stars.

Fans on exoplanet science will remember the announcement of the first prospective Earth-like world orbiting in the habitable zone of its host star, Kepler-186f announced just last year.

The Kepler Space Telescope looks for planets used a technique known as the transit method. If a planet is orbiting its host star along our line of sight, a small but measurable dip in the star’s brightness occurs. This has advantages over the radial velocity technique because it allows researchers to pin down the hidden planet’s orbit and size much more precisely. The transit method is biased, however, to planets close in to its host which happen to lie along our solar system-bound line of sight. Kepler may miss most exo-worlds inclined out of its view, but it overcomes this by staring at thousands of stars.

Kepler launch
The launch of Kepler from the Cape in 2009. Credit: NASA/Kim Shiflett.

Launched in 2009, Kepler has wrapped up its primary phase of starring at a patch of sky along the plane of the Milky Way in the directions of the constellations of Cygnus, Lyra and Hercules, and is now in its extended K2 mission using the solar wind pressure as a 3rd ‘reaction wheel’ to carry out targeted searches along the ecliptic plane.

Both newly discovered worlds highlighted in today’s announcement orbit distant red dwarf stars. Kepler-438 b is estimated to be 12% larger in diameter than the Earth, and Kepler-442 b is estimated by the team to be 33% larger. These worlds have a 70% and 60% chance of being rocky, respectively. For comparison, Ice giant planet Uranus is 4 times the diameter of the Earth, and over 14 times more massive.

A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.
A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.

“We don’t know for sure whether any of the planets in our sample are truly habitable,” Said CfA co-researcher in the study David Kipping. All we can say is that they’re promising candidates.”

The idea of habitable worlds around red dwarf stars is a tantalizing one. These stars are fainter and cooler than our Sun, and 7.5% to 50% as massive. They also have two primary factors going for them: they’re the most common type of stars in the universe, and they have life spans measured in trillions of years, much longer than the current age of the universe. If life could go from muck to making microwave dinners here on Earth in just a few billion years, it’s had lots longer to do the same on worlds orbiting red dwarf stars.

There is, however, one catch: the habitable zone surrounding a red dwarf is much closer in to its host star, and any would-be planet is subject to frequent surface-sterilizing flares. Perhaps a world with a synchronous rotation might be spared this fate and feature a habitable hemisphere well inside the snow line permanently turned away from its host.

The team made these discoveries by sifting though Kepler’s preliminary finds that are termed KOI’s, or Kepler Objects of Interest. Though these potential discoveries were far too small to pin down their masses using the traditional method, the team employed a program named BLENDER to statically validate the finds. BLENDER has been employed before in concert with backup observations for extremely tiny exoplanet discoveries. Torres and Francois Fressin developed the BLENDER program, and it is currently run on the massive Pleiades supercomputer at NASA Ames.

It was also noted in today’s press conference that two KOIs awaiting validation — 5737.01 and 2194.03 — may also prove to be terrestrial worlds  orbiting Sun-like stars that are possibly similar in size to the Earth.

The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.
The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.

But don’t plan on building an interstellar ark and heading off to these newly found worlds just yet. Kepler-438b sits 470 light years from Earth, and Kepler-442b is even farther away at 1,100 light years. And we’ll also add our usual caveat and caution that, from a distance, the planet Venus in our own solar system might look like a tempting vacation spot. (Spoiler alert: it’s not).

Still, these discoveries are fascinating finds and add to the growing menagerie of exoplanet systems. These will also serve as great follow up targets for TESS, Gaia and LSST survey, all set to add to our exoplanet knowledge in the coming decade.

The LSST mirror in the Tuscon Mirror Lab. (Photo by author).
The LSST mirror in the Tuscon Mirror Lab. (Photo by author).

And to think, I remember growing up as a child of the 1970s reading that exoplanet detections were soooo difficult that they might never occur in our lifetime… now, fast-forward to 2015, and we’re beginning to classify and characterize other brave new solar systems in the modern Age of Exoplanet Science.

-Looking to observe red dwarf stars with your backyard scope? Check out our handy list.

BREAKING: Antares Rocket Explodes at Liftoff

Seconds after liftoff, Orbital Science’s Antares rocket exploded as it rose from the Mid-Atlantic Regional Spaceport at Wallops Island, Virginia. In video, the explosion appeared to come at the base of the rocket. The entire stack then fell back to the ground, with a second larger explosion.

According to NASA TV, there were no injuries reported at the launch site but there appears to be damage to the launch pad.

We’ll provide more information and updates as they become available. NASA and Orbital said they would be scheduling a news conference. Our Ken Kremer is on location at Wallops.

This is the first launch failure for NASA’s commercial space companies. Antares has had five successful launches. The launch was originally scheduled for Oct. 27 but was scrubbed when a boat entered restricted waters off the coast from the launch site.

The mission, was the third of eight Commercial Resupply Services missions that Orbital Sciences is under contract to NASA. The Cygnus capsule, named by Orbital the “SS Deke Slayton” after the late astronaut, was carrying 2,290 kilograms of cargo for the International Space Station.

This video was shot by journalist Matthew Travis at the press site at Wallops: