NASA, Boeing, and SpaceX to Launch 1st Commercial Crew Ships to Space Station in 2017

After a hiatus of six long years, US astronauts will finally launch to space in a revolutionary new pair of private crew capsules under development by Boeing and SpaceX, starting in 2017, that will end our sole source reliance on the Russians for launching our astronauts to the International Space Station (ISS).

Two years from now, crews will start flying to space aboard the first US commercial spaceships, launching atop US rockets from US soil, said officials from Boeing, SpaceX, and NASA at a joint news conference on Monday, Jan. 26. The human rated spaceships – also known as “space taxis” – are being designed and manufactured under the auspices of NASA’s Commercial Crew Program (CCP).

A two person mixed crew of NASA astronauts and company test pilots will fly on the first test flights going to the space station in 2017.

The goal of NASA’s Commercial Crew Program, underway since 2010, has been to develop safe, reliable, and cost-effective spaceships that will ferry astronauts to and from the massive orbiting lab complex.

“It’s an incredible testament to American ingenuity and know-how, and an extraordinary validation of the vision we laid out just a few years ago as we prepared for the long-planned retirement of the space shuttle,” said NASA Administrator Charlie Bolden during the briefing at the agency’s Johnson Space Center in Houston. Bolden is a four time veteran space shuttle astronaut.

“This work is part of a vital strategy to equip our nation with the technologies for the future and inspire a new generation of explorers to take the next giant leap for America.”

NASA's Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing's John Elbon, SpaceX's Gwynne Shotwell and NASA astronaut Mike Fincke.  Credit:  NASA TV
NASA’s Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing’s John Elbon, SpaceX’s Gwynne Shotwell, and NASA astronaut Mike Fincke at Jan. 26 commercial crew new conference. Credit: NASA TV

“We have been working overtime to get Americans back to space from US soil and end US reliance on Russia,” Bolden added. “My job is to ensure we get Americans back to space as soon as possible and safely.”

“We have been in-sourcing space jobs back to the US.”

“To do this we need for Congress to approve full funding for the Commercial Crew Program!”

“This and the ISS are a springboard to going beyond Earth. All this we are doing will enable us to get Humans to Mars!”

However – severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats instead of employing American aerospace workers.

On Sept. 16, 2014, Administrator Bolden announced that Boeing and SpaceX had won the high stakes and history making NASA competition to build the first ever private “space taxis” to launch American and partner astronauts to the ISS and restore America’s capability to launch our crews from American soil for the first time since 2011.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

During the Sept. 16 briefing at the Kennedy Space Center, Bolden announced at that time that contracts worth a total of $6.8 Billion were awarded to Boeing to build the manned CST-100 and to SpaceX to build the manned Dragon V2.

Boeing was awarded the larger share of the crew vehicle contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

For extensive further details about Boeing’s CST-100 manned capsule, be sure to read my exclusive 2 part interview with Chris Ferguson, NASA’s final shuttle commander and now Boeing’s Commercial Crew Director: here and here.

And read about my visit to the full scale CST-100 mockup at its manufacturing facility at KSC – here and here.

B8SsB9UCQAElkbJ.jpg large

But the awards were briefly put on hold when the third bidder, Sierra Nevada Corp, protested the decision and thereby prevented NASA from discussing the awards until the issue was resolved by the General Accounting Office (GAO) earlier this month in favor of NASA.

Everyone involved is now free to speak about the awards and how they were decided.

Each company must successfully achieve a set of 10 vehicle and program milestones agreed to with NASA, as well as meeting strict certification and safety standards.

“There are launch pads out there already being upgraded and there is hardware already being delivered,” said Kathy Lueders, manager of the Kennedy Space Center-based Commercial Crew Program.

“Both companies have already accomplished their first milestones.”

Every American astronaut has been totally reliant on the Russians and their three person Soyuz capsules for seats to launch to the ISS since the forced retirement of NASA’s Space Shuttle program in July 2011 following the final blastoff of orbiter Atlantis on the STS-135 mission.

Under the latest crew flight deal signed with Roscosmos [the Russian Federal Space Agency], each astronaut seat costs over $70 million.

“I don’t ever want to have to write another check to Roscosmos after 2017, hopefully,” said Bolden.

Under NASA’s commercial crew contracts, the average cost to fly US astronauts on the Dragon and CST-100 is $58 million vs. over $70 million on the Russian Soyuz.

At the briefing, Bolden indicated he was hopeful Congress would be more supportive of the program in the coming 2016 budget cycle than in the past that has already resulted in a 2 year delay in the first flights.

“Congress has started to understand the critical importance of commercial crew and cargo. They’ve seen, as a result of the performance of our providers, that this is not a hoax, it’s not a myth, it’s not a dream,” said Bolden.

“It’s something that’s really happening. I am optimistic that the Congress will accept the President’s proposal for commercial crew for 2016.”

The first unmanned test flights of the SpaceX Dragon V2 and Boeing CST-100 could take place by late 2016 or early 2017 respectively. Manned flights to the ISS would follow soon thereafter by the spring and summer of 2017.

Asked at the Jan. 26 briefing if he would fly aboard the private space ships, Administrator Bolden said:

“Yes. I can tell you that I would hop in a Dragon or a CST-100 in a heartbeat.”

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Boeing’s plans for the CST-100 involve conducting a pad abort test in February 2017, followed by an uncrewed orbital flight test in April 2017, and then a crewed flight with a Boeing test pilot and a NASA astronaut in July 2017, as outlined at the briefing by John Elbon, vice president and general manager of Boeing’s Space Exploration division.

“It’s a very exciting time with alot in development on the ISS, SLS, and Commercial Crew. Never before in the history of human spaceflight has there been so much going on all at once,” said John Elbon. “NASA’s exploring places we didn’t even know existed 100 years ago.”

“We are building the CST-100 structural test article.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014, for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

SpaceX’s plans for the Dragon V2 were outlined by Gwynne Shotwell, president of SpaceX.

“The Dragon V2 builds on the cargo Dragon. First up is a pad abort in about a month [at Cape Canaveral], then an in-flight abort test later this year [at Vandenberg to finish up development work from the prior CCiCAP phase],” said Shotwell.

“An uncrewed flight test is planned for late 2016 followed by a crewed flight test in early 2017.”

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight.”

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flights since the dawn of the space age.

The Boeing CST-100 will launch atop a human rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a human rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 “Space Taxi” will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014, at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

A History of Launch Failures: “Not Because They are Easy, but Because They are Hard”

Over the 50-plus years since President John F. Kennedy’s Rice University speech, spaceflight has proven to be hard. It doesn’t take much to wreck a good day to fly.

Befitting a Halloween story, rocket launches, orbital insertions, and landings are what make for sleepless nights. These make-or-break events of space missions can be things that go bump in the night: sometimes you get second chances and sometimes not. Here’s a look at some of the past mission failures that occurred at launch. Consider this a first installment in an ongoing series of articles – “Not Because They Are Easy.”

A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)
A still image from one of several videos of the ill-fated Antares launch of October 28, 2014, taken by engineers at the Mid-Atlantic Regional Spaceport, Wallops, VA. (Credit: NASA)

The evening of October 28, 2014, was another of those hard moments in the quest to explore and expand humanity’s presence in space. Ten years ago, Orbital Sciences Corporation sought an engine to fit performance requirements for a new launch vehicle. Their choice was a Soviet-era liquid fuel engine, one considered cost-effective, meeting requirements, and proving good margins for performance and safety. The failure of the Antares rocket this week could be due to a flaw in the AJ-26 or it could be from a myriad of other rocket parts. Was it decisions inside NASA that cancelled or delayed engine development programs and led OSC and Lockheed-Martin to choose “made in Russia” rather than America?

Here are other unmanned launch failures of the past 25 years:

Falcon 1, Flight 2, March 21, 2007. Fairings are hard. There are fairings that surround the upper stage engines and a fairing covering payloads.  Fairings must not only separate but also not cause collateral damage. The second flight of the Falcon 1 is an example of a 1st stage separation and fairing that swiped the second stage nozzle. Later, overcompensation by the control system traceable to the staging led to loss of attitude control; however, the launch achieved most of its goals and the mission was considered a success. (View: 3:35)

Proton M Launch, Baikonur Aerodrome, July 2, 2013. The Proton M is the Russian Space program’s workhorse for unmanned payloads. On this day, the Navigation, Guidance, and Control System failed moments after launch. Angular velocity sensors of the guidance control system were installed backwards. Fortunately, the Proton M veered away from its launch pad sparing it damage.

Ariane V Maiden Flight, June 4, 1996. The Ariane V was carrying an ambitious ESA mission called Cluster – a set of four satellites to fly in tetrahedral formation to study dynamic phenomena in the Earth’s magnetosphere. The ESA launch vehicle reused flight software from the successful Ariane IV. Due to differences in the flight path of the Ariane V, data processing led to a data overflow – a 64 floating point variable overflowing a 16 bit integer. The fault remained undetected and flight control reacted in error. The vehicle veered off-course, the structure was stressed and disintegrated 37 seconds into flight. Fallout from the explosion caused scientists and engineers to don protective gas masks. (View: 0:50)

Delta II, January 17, 1997. The Delta II is one of the most successful rockets in the history of space flight, but not on this day. Varied configurations change up the number of solid rocket motors strapped to the first stage. The US Air Force satellite GPS IIR-1 was to be lifted to Earth orbit, but a Castor 4A solid rocket booster failed seconds after launch. A hairline fracture in the rocket casing was the fault. Both unspent liquid and solid fuel rained down on the Cape, destroying launch equipment, buildings, and even parked automobiles. This is one of the most well documented launch failures in history.

Compilation of Early Launch Failures. Beginning with several of the early failures of Von Braun’s V2, this video compiles many failures over a 70 year period. The early US space program endured multiple launch failures as they worked at a breakneck speed to catch up with the Soviets after Sputnik. NASA did not yet exist. The Air Force and Army had competing designs, and it was the Army with the German rocket scientists, including Von Braun, that launched the Juno 1 rocket carrying Explorer 1 on January 31, 1958.

One must always realize that while spectacular to launch viewers, a rocket launch has involved years of development, lessons learned, and multiple revisions. The payloads carried involve many hundreds of thousands of work-hours. Launch vehicle and payloads become quite personal. NASA and ESA have offered grief counseling to their engineers after failures.

We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

Kennedy’s Rice University Speech, September 12, 1962

Mysterious Military X-37B Space plane Lands after Nearly Two Years in Orbit – Video

Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit. Photo: Boeing
Watch cool landing video below[/caption]

The US Air Force’s unmanned, X-37B military space plane made an autonomous runway landing on Friday, Oct. 17, at Vandenberg Air Force Base, Calif., concluding an orbital test flight nearly two years in duration on a record breaking mission whose goals are shrouded in secrecy.

The Boeing-built X-37B, also known as the Orbital Test Vehicle (OTV), successfully fired its baking thrusters, plunged through the atmosphere, endured scorching re-entry heating and safely rolled to touch down on Vandenberg Air Force Base at 9:24 a.m. PDT Friday, concluding a clandestine 674-day experimental test mission for the U.S. Air Force Rapid Capabilities Office.

This was the third flight of an X-37B OTV vehicle on a mission known as OTV-3.

“I’m extremely proud of our team for coming together to execute this third safe and successful landing,” said Col Keith Balts, 30th Space Wing commander, in a statement.

“Everyone from our on console space operators to our airfield managers and civil engineers take pride in this unique mission and exemplify excellence during its execution.”

Nothing is known about the flights objectives or accomplishments beyond testing the vehicle itself.

The OTV is somewhat like a miniature version of NASA’s space shuttles. Boeing has built two OTV vehicles.

The reusable space plane is designed to be launched like a satellite and land on a runway like an airplane and a NASA space shuttle. The X-37B is one of the newest and most advanced reentry spacecraft.

A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg Air Force Base, Calif, following a successful 674-day space mission.  Photo: Boeing
A third mission of the Boeing-built X-37B Orbital Test Vehicle was completed on Oct. 17, 2014, when it landed and was recovered at Vandenberg Air Force Base, Calif, following a successful 674-day space mission. Photo: Boeing

OTV-3 also marked the first reflight of an OTV vehicle, to test its re-usability.

The OTV-3 mission was launched from Cape Canaveral Air Force Station, Fla., on Dec. 11, 2012, encapsulated inside the payload fairing atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41.

Among the primary mission goals of the first two flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely.

It is not known if the X-37B conducted reconnaissance activities during the test flights. It does have the capability to deploy satellites in space.

All three OTV missions have launched from Cape Canaveral and landed at Vandenberg.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit.

Here’s a video of the OTV-3 landing:

Video Caption: The X-37B Orbital Test Vehicle mission 3 (OTV-3), the Air Force’s unmanned, reusable space plane, landed at Vandenberg Air Force Base at 9:24 a.m. Oct. 17. Credit: USAF

“The 30th Space Wing and our mission partners, Air Force Rapid Capabilities Office, Boeing, and our base support contractors, have put countless hours of hard work into preparing for this landing and today we were able to see the culmination of that dedication,” said Balts.

The 11,000 pound state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Altogether, the OTV vehicles have spent 1,334 days in Earth orbit.

The OTV’s can stay on orbit far longer than NASA’s shuttles since their power is supplemented by solar panels deployed from the vehicles open cargo bay.

“The landing of OTV-3 marks a hallmark event for the program” said the X-37B program manager. “The mission is our longest to date and we’re pleased with the incremental progress we’ve seen in our testing of the reusable space plane. The dedication and hard work by the entire team has made us extremely proud.”

“With a program total of 1,367 days on orbit over three missions, these agile and powerful small space vehicles have completed more days on orbit than all 135 Space Shuttle missions combined, which total 1,334 days,” said Ken Torok, Boeing director of Experimental Systems, in a statement.

Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit.   Photo: Boeing
Recovery crew members process the X-37B Orbital Test Vehicle at Vandenberg Air Force Base after completing 674 days in space. A total of three X-37B missions have been completed, totaling 1,367 days on orbit. Photo: Boeing

“The X-37B is the newest and most advanced re-entry spacecraft. Managed by the Air Force Rapid Capabilities Office, the X-37B program performs risk reduction, experimentation and concept of operations development for reusable space vehicle technologies,” according to an Air Force statement.

The Air Force says that the next X-37B launch on the OTV-4 mission is due to liftoff from Cape Canaveral sometime in 2015.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive  X 37-B shows the umbilical line attachments. Credit: Ken Kremer
US Air Force X-37B OTV-2 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to 5 March 2011 launch. This up close view of the nose cone holding the secretive X-37B shows the umbilical line attachments. Credit: Ken Kremer

How Private Space Companies Make Money Exploring The Final Frontier

TORONTO, CANADA – There’s a big difference in thinking between governments and the private companies that participate in space. While entities such as NASA can work on understanding basic human health or exploring the universe for the sake of a greater understanding, companies have a limitation: they need to eventually make a profit.

This was brought up in a human spaceflight discussion at the International Astronautical Congress today (Oct. 1), which included participants from agencies and companies alike. Below are some concepts for how private companies in the space world today are making their money.

“We have in space a movement towards more privatization … and also for more use of space activities in general and human space activity in the future by individual private persons,” said Johann Dietrich Worner, chairman of the executive board of DLR (Germany’s space agency), in the panel.

“You can imagine that even for the upcoming 10 to 20 to 30 years, the public funding is the basic funding for [space] activities while in other areas, we are already seeing that private money is doing its work if you look to communication and if you look to other activities, like for instance, research in space.”

But commercial spaceflight is already taking place, as some of these examples show.

Commercial crew

Would you ‘Enter the Dragon’? First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace
Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace

The two successful companies in NASA’s latest round of commercial contracts — SpaceX (Dragon) and Boeing (CST-100) — are each receiving government money to develop their private space taxis. The companies are responsible for meeting certain milestones to receive funds. There is quite the element of risk involved because the commercial contracts are only given out in stages; you could be partway through developing the spacecraft and then discover you will not be awarded one for the next round. This is what happened to Sierra Nevada Corp., whose Dream Chaser concept did not receive more money in the announcement last month. The company has filed a legal challenge in response.

Private space travel

Sir Richard Branson hugs designer Burt Rutan as they are surrounded by employee's of Virgin Galactic, The SpaceShip Company and Scaled Composites watch as Virgin Galactic's SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt's wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its "mothership", WhiteKnight2 over the Mojave, CA area, April 29, 2013 at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.
Sir Richard Branson hugs designer Burt Rutan, surrounded by employees of Virgin Galactic, The SpaceShip Company, and Scaled Composites, and watch as Virgin Galactic’s SpaceShip2 streaks across the sky under rocket power, its first ever since the program began in 2005. Burt’s wife Tonya Rutan is at right taking their photo. The spacecraft was dropped from its “mothership,” WhiteKnight2, over the Mojave CA area on April 29, 2013, at high altitude before firing its hybrid power motor. Virgin Galactic hopes to become the first commercial space venture to bring multiple passengers into space on a regular basis.

Virgin Galactic and its founder, Richard Branson, are perhaps the most visible of the companies that are looking to bring private citizens into space — as long as they can pay $250,000 for a ride. The first flight of Virgin into space is expected in the next year. Customers must pay a deposit upfront upon registering and then the balance before they head into suborbit. In the case of Virgin, Branson has a portfolio of companies that can take on the financial risk during the startup phase, but eventually the company will look to turn a profit through the customer payments.

Asteroid mining

Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.
Artist concept of the ARKYD spacecraft by an asteroid. Credit: Planetary Resources.

The business case for Planetary Resources and Deep Space Industries, the two self-proclaimed asteroid mining companies, hasn’t fully been released yet. We assume that the companies would look to make a profit through selling whatever resources they manage to dig up on asteroids, but bear in mind it would cost quite a bit of money to get a spacecraft there and back. Meanwhile, Planetary Resources is diversifying its income somewhat by initiatives such as the Arkyd-100 telescope, which will look for asteroids from Earth orbit. They raised money for the project through crowdsourcing.

Space station research

The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA
The International Space Station in March 2009 as seen from the departing STS-119 space shuttle Discovery crew. Credit: NASA/ESA

NanoRacks is a company that has research slots available on the International Space Station that it sells to entities looking to do research in microgravity. The company has places inside the station and can also deploy small satellites through a Japanese system. While the company’s website makes it clear that they are focused on ISS utilization, officials also express an interest in doing research in geocentric orbit, the moon or even Mars.

Boeing and SpaceX Win NASA’s ‘Space Taxi’ Contracts for Space Station Flights

KENNEDY SPACE CENTER, FL – NASA Administrator Charles Bolden announced that Boeing and SpaceX have won the high stakes and history making NASA competition to build the first ever private ‘space taxis’ to launch American astronauts to the International Space Station (ISS) and restore America’s capability to launch our crews from American soil for the first time since 2011.

Bolden made the historic announcement of NASA’s commercial crew contract winners to build America’s next human rated spaceships at the Kennedy Space Center (KSC) on Wednesday, Sept. 16 at a briefing for reporters.

The ‘space taxi’ contract to build the Boeing CST-100 and SpaceX Dragon V2 spaceships is worth a total of $6.8 Billion, with the goal to end the nation’s sole source reliance on Russia in 2017.

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

Boeing was awarded the larger share of the contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

“From day one, the Obama Administration made clear that the greatest nation on Earth should not be dependent on other nations to get into space,” Bolden told reporters at the agency’s Kennedy Space Center in Florida.

“Thanks to the leadership of President Obama, the hard work of our NASA and industry teams, and support from Congress, today we are one step closer to launching our astronauts from U.S. soil on American spacecraft and ending the nation’s sole reliance on Russia by 2017. Turning over low-Earth orbit transportation to private industry will also allow NASA to focus on an even more ambitious mission – sending humans to Mars.”

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

The awards from NASA’s Commercial Crew Program (CCP) offices will continue to be implemented as a public-private partnership and are the fruition of NASA’s strategy to foster the development of privately built human spaceships that began in 2010.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

Both spaceships are capsule design with parachute assisted landings. The third competitor involving Sierra Nevada’s Dream Chaser mini-shuttle offering runway landings was not selected for further development.

“We are excited to see our industry partners close in on operational flights to the International Space Station, an extraordinary feat industry and the NASA family began just four years ago,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“This space agency has long been a technology innovator, and now we also can say we are an American business innovator, spurring job creation and opening up new markets to the private sector. The agency and our partners have many important steps to finish, but we have shown we can do the tough work required and excel in ways few would dare to hope.”

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flight since the dawn of the space age.

The Boeing CST-100 will launch atop a man rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a man rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Boeing and SpaceX issued the following statements after the awards were announced.

“Boeing has been part of every American human space flight program, and we’re honored that NASA has chosen us to continue that legacy,” said John Elbon, Boeing vice president and general manager, Space Exploration, in a statement in response NASA’s award.

“The CST-100 offers NASA the most cost-effective, safe and innovative solution to U.S.-based access to low-Earth orbit.”

“Under the Commercial Crew Transportation (CCtCap) phase of the program, Boeing will build three CST-100s at the company’s Commercial Crew Processing Facility at Kennedy Space Center in Florida. The spacecraft will undergo a pad-abort test in 2016 and an uncrewed flight in early 2017, leading up to the first crewed flight to the ISS in mid-2017.”

“SpaceX is deeply honored by the trust NASA has placed in us. We welcome today’s decision and the mission it advances with gratitude and seriousness of purpose,” said Elon Musk, CEO & Chief Designer, SpaceX, in a statement in response NASA’s award.

“It is a vital step in a journey that will ultimately take us to the stars and make humanity a multi-planet species.”

Stay tuned here for Ken’s continuing Boeing, SpaceX, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

launch-02_0

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

US Heavy Lift Mars Rocket Passes Key Review and NASA Sets 2018 Maiden Launch Date

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Story updated[/caption]

After a thorough review of cost and engineering issues, NASA managers formally approved the development of the agency’s mammoth heavy lift rocket – the Space Launch System or SLS – which will be the world’s most powerful rocket ever built and is intended to take astronauts farther beyond Earth into deep space than ever before possible – to Asteroids and Mars.

The maiden test launch of the SLS is targeted for November 2018 and will be configured in its initial 70-metric-ton (77-ton) version, top NASA officials announced at a briefing for reporters on Aug. 27.

On its first flight known as EM-1, the SLS will also loft an uncrewed Orion spacecraft on an approximately three week long test flight taking it beyond the Moon to a distant retrograde orbit, said William Gerstenmaier, associate administrator for the Human Explorations and Operations Mission Directorate at NASA Headquarters in Washington, at the briefing.

Previously NASA had been targeting Dec. 2017 for the inaugural launch from the Kennedy Space Center in Florida – a slip of nearly one year.

But the new Nov. 2018 target date is what resulted from the rigorous assessment of the technical, cost and scheduling issues.

This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs.   Credit:  NASA/MSFC
This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs. Credit: NASA/MSFC

The decision to move forward with the SLS comes after a wide ranging review of the technical risks, costs, schedules and timing known as Key Decision Point C (KDP-C), said Associate Administrator Robert Lightfoot, at the briefing. Lightfoot oversaw the review process.

“After rigorous review, we’re committing today to a funding level and readiness date that will keep us on track to sending humans to Mars in the 2030s – and we’re going to stand behind that commitment,” said Lightfoot. “Our nation is embarked on an ambitious space exploration program.”

“We are making excellent progress on SLS designed for missions beyond low Earth orbit,” Lightfoot said. “We owe it to the American taxpayers to get it right.”

He said that the development cost baseline for the 70-metric ton version of the SLS was $7.021 billion starting from February 2014 and continuing through the first launch set for no later than November 2018.

Lightfoot emphasized that NASA is also building an evolvable family of vehicles that will increase the lift to an unprecedented lift capability of 130 metric tons (143 tons), which will eventually enable the deep space human missions farther out than ever before into our solar system, leading one day to Mars.

“It’s also important to remember that we’re building a series of launch vehicles here, not just one,” Lightfoot said.

Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida.   Credit: NASA/MSFC
Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida. Credit: NASA/MSFC

Lightfoot and Gerstenmaier both indicated that NASA hopes to launch sooner, perhaps by early 2018.

“We will keep the teams working toward a more ambitious readiness date, but will be ready no later than November 2018,” said Lightfoot.

The next step is conduct the same type of formal KDP-C reviews for the Orion crew vehicle and Ground Systems Development and Operations programs.

The first piece of SLS flight hardware already built and to be tested in flight is the stage adapter that will fly on the maiden launch of Orion this December atop a ULA Delta IV Heavy booster during the EFT-1 mission.

The initial 70-metric-ton (77-ton) version of the SLS stands 322 feet tall and provides 8.4 million pounds of thrust. That’s already 10 percent more thrust at launch than the Saturn V rocket that launched NASA’s Apollo moon landing missions, including Apollo 11, and it can carry more than three times the payload of the now retired space shuttle orbiters.

The core stage towers over 212 feet (64.6 meters) tall with a diameter of 27.6 feet (8.4 m) and stores cryogenic liquid hydrogen and liquid oxygen. Boeing is the prime contractor for the SLS core stage.

The first stage propulsion is powered by four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The pressure vessels for the Orion crew capsule, including EM-1 and EFT-1, are also being manufactured at MAF. And all of the External Tanks for the space shuttles were also fabricated at MAF.

The airframe structure for the first Dream Chaser astronaut taxi to low Earth orbit is likewise under construction at MAF as part of NASA’s commercial crew program.

The first crewed flight of the SLS is set for the second launch on the EM-2 mission around the 2020/2021 time frame, which may visit a captured near Earth asteroid.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Tour Around Boeing’s CST-100 Spaceliner to LEO: Photos

KENNEDY SPACE CENTER, FL – On Monday, June 9, Boeing revealed the design of their CST-100 astronaut spaceliner aimed at restoring Americas ability to launch our astronauts to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

The full scale CST-100 mockup was unveiled at an invitation only ceremony for Boeing executives and media held inside a newly renovated shuttle era facility at the Kennedy Space Center where the capsule would start being manufactured later this year.

Universe Today was invited to tour the capsule for a first hand inspection of the CST-100’s interior and exterior and presents my photo gallery here.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

The CST-100 is a privately built manrated capsule being developed with funding from NASA under the auspices of the agency’s Commercial Crew Program (CCP) in a public/private partnership between NASA and private industry.

The vehicle will be assembled inside the refurbished processing hangar known during the shuttle era as Orbiter Processing Facility-3 (OPF-3). Boeing is leasing the site from Space Florida.

Boeing is one of three American aerospace firms vying for a NASA contract to build an American ‘space taxi’ to ferry US astronauts to the space station and back as soon as 2017.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

The SpaceX Dragon and Sierra Nevada Dream Chaser are also receiving funds from NASA’s commercial crew program.

NASA will award one or more contracts to build Americas next human rated spaceship in August or September.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

Chris Ferguson, the final shuttle commander for NASA’s last shuttle flight (STS-135) now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Astronaut mannequin seated below pilot console inside Boeing’s commercial CST-100 'Space Taxi' mockup.  Credit: Ken Kremer - kenkremer.com
Astronaut mannequin seated below pilot console inside Boeing’s commercial CST-100 ‘Space Taxi’ mockup. Credit: Ken Kremer – kenkremer.com
Five person crews will fly Boeing CST-100 capsule to ISS. Credit: Ken Kremer - kenkremer.com
Five person crews will fly Boeing CST-100 capsule to ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

US astronauts will eventually enter the ISS through this docking port. Credit: Ken Kremer - kenkremer.com
US astronauts will eventually enter the ISS through this docking port. Credit: Ken Kremer – kenkremer.com
US Senator Bill Nelson (FL) and NASA’s final space shuttle commander inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014.  Nelson is seated below pilots console and receives CST-100 briefing from Ferguson who now directs Boeing’s crew efforts.  Nelson also flew in space aboard the Columbia shuttle in Jan. 1986.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) and NASA’s final space shuttle commander inside Boeing’s CST-100 manned capsule during unveiling ceremony at the Kennedy Space Center, Florida on June 9, 2014. Nelson is seated below pilots console and receives CST-100 briefing from Ferguson who now directs Boeing’s crew efforts. Nelson also flew in space aboard the Columbia shuttle in Jan. 1986. Credit: Ken Kremer – kenkremer.com
Boeing CST-100 spaceship unveiled at Kennedy Space Center FL on June 9, 2014 Posing from left to right; Frank DelBello, Space Florida, John Elbon, Boeing VP Space Exploration, US Sen. Bill Nelson (FL), final shuttle commander Chris Ferguson, Boeing Director of Crew and Mission Operations and John Mulholland, Boeing VP Commercial Space Exploration.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 spaceship unveiled at Kennedy Space Center FL on June 9, 2014 Posing from left to right; Frank DelBello, Space Florida, John Elbon, Boeing VP Space Exploration, US Sen. Bill Nelson (FL), final shuttle commander Chris Ferguson, Boeing Director of Crew and Mission Operations and John Mulholland, Boeing VP Commercial Space Exploration. Credit: Ken Kremer – kenkremer.com

US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014.  Credit: Ken Kremer - kenkremer.com
US Senator Bill Nelson (FL) addresses crowd at unveiling ceremony for Boeing’s CST-100 manned capsule to the ISS at the Kennedy Space Center, Florida on June 9, 2014. Credit: Ken Kremer – kenkremer.com

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

World’s Largest Heat Shield Attached to NASA’s Orion Crew Capsule for Crucial Fall 2014 Test Flight

Lockheed Martin and NASA engineers are installing the largest heat shield ever built onto the Orion EFT-1 spacecraft’s crew module at the Kennedy Space Center. Liftoff is slated for late Fall 2014. Credit: Lockheed Martin
Story updated[/caption]

In a key milestone, technicians at the Kennedy Space Center (KSC) in Florida have attached the world’s largest heat shield to a pathfinding version of NASA’s Orion crew capsule edging ever closer to its inaugural unmanned test flight later this Fall on a crucial mission dubbed Exploration Flight Test-1 (EFT-1).

One of the primary goals of NASA’s eagerly anticipated Orion EFT-1 uncrewed test flight is to test the efficacy of the heat shield in protecting the vehicle – and future human astronauts – from excruciating temperatures reaching 4000 degrees Fahrenheit (2200 C) during scorching re-entry heating.

A trio of parachutes will then unfurl to slow Orion down for a splashdown in the Pacific Ocean.

Orion is NASA’s next generation human rated vehicle now under development to replace the now retired space shuttle. The state-of-the-art spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

“The Orion heat shield is the largest of its kind ever built. Its wider than the Apollo and Mars Science Lab heat shields,” Todd Sullivan told Universe Today. Sullivan is the heat shield senior manager at Lockheed Martin, Orion’s prime contractor.

The heat shield measures 16.5 feet (5 m) in diameter.

Lockheed Martin and NASA technicians mated the heat shield to the bottom of the capsule during assembly work inside the Operations and Checkout High Bay facility at KSC.

“Holes were drilled into the heat shield from the inside to the outside at the structural attached points at the underside of the crew module,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during a recent exclusive interview by Universe Today inside the Orion clean room at KSC.

“Then its opened up from the outside and bolted in place underneath. Closeout plugs made of Avcoat are then installed to close it up and seal the gaps,” Schneider explained.

The heat shield is constructed from a single seamless piece of Avcoat ablator, that was applied by engineers at Textron Defense System near Boston, Mass.

“They applied the Avcoat ablater material to the outside. That’s what protects the spacecraft from the heat of reentry,” Sullivan explained.

The ablative material will wear away as it heats up during the capsules atmospheric re-entry thereby preventing the 4000 degree F heat from being transferred to the rest of the capsule and saving it and the human crew from utter destruction.

Coming together! Orion's heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA
Coming together! Orion’s heat shield and crew module in position for mating operations at NASA KSC. Credit: NASA

Orion EFT-1 is slated to launch in December 2014 atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket, currently the most powerful booster in America’s fleet.

The Delta IV Heavy is the only rocket with sufficient thrust to launch the Orion EFT-1 capsule and its attached upper stage to its intended orbit of 3600 miles altitude above Earth – about 15 times higher than the International Space Station (ISS) and farther than any human spacecraft has journeyed in 40 years.

At the conclusion of the two-orbit, four- hour EFT-1 flight, the detached Orion capsule plunges back and re-enters the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

“The big reason to get to those high speeds during EFT-1 is to be able to test out the thermal protection system, and the heat shield is the biggest part of that.”

“Numerous sensors and instrumentation have been specially installed on the EFT-1 heat shield and the back shell tiles to collect measurements of things like temperatures, pressures and stresses during the extreme conditions of atmospheric reentry,” Wilson explained.

Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the  Operations and Checkout High Bay facility at KSC.  Credit: NASA
Orion heat shield attached to the bottom of the capsule by engineers during assembly work inside the Operations and Checkout High Bay facility at KSC. Credit: NASA

The heat shield arrived at KSC in December 2013 loaded inside NASA’s Super Guppy aircraft while I was onsite. Read my story – here.

The data gathered during the unmanned EFT-1 flight will aid in confirming. or refuting, design decisions and computer models as the program moves forward to the first flight atop NASA’s mammoth SLS booster in late 2017 on the EM-1 mission and more human crewed missions thereafter.

Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com
Orion EFT-1 heat shield is off loaded from NASA’s Super Guppy aircraft after transport from Manchester, N.H., and arrival at the Kennedy Space Center in Florida on Dec. 5, 2013. Credit: Ken Kremer/kenkremer.com

Recently, the EFT-1 launch was postponed three months from its long planned slot in mid-September to December 2014 when NASA was ordered to make way for the accelerated launch of recently declassified US Air Force Space Surveillance satellites that were given a higher priority.

The covert Geosynchronous Space Situational Awareness Program, or GSSAP, satellites were only unveiled in Feb. 2014 during a speech by General William Shelton, commander of the US Air Force Space Command.

Despite the EFT-1 launch postponement, Kennedy Space Center Director Bob Cabana said technicians are pressing forward and continue to work around the clock at KSC in order to still be ready in time to launch by the original launch window that opens in mid- September 2014.

“The contractor teams are working to get the Orion spacecraft done on time for the December 2017 launch,” said Cabana.

“They are working seven days a week in the Operations and Checkout High Bay facility to get the vehicle ready to roll out for the EFT-1 mission and be mounted on top of the Delta IV Heavy.”

“I can assure you the Orion will be ready to go on time, as soon as we get our opportunity to launch that vehicle on its first flight test and that is pretty darn amazing.”

“Our plan is to have the Orion spacecraft ready because we want to get EFT-1 out so we can start getting the hardware in for Exploration Mission-1 (EM-1) and start processing for that vehicle that will launch on the Space Launch System (SLS) rocket in 2017,” Cabana told me

Concurrently, new American-made private crewed spaceships are under development by SpaceX, Boeing and Sierra Nevada – with funding from NASA’s Commercial Crew Program (CCP) – to restore US capability to ferry US astronauts to the International Space Station (ISS) and back to Earth by late 2017.

Read my exclusive new interview with NASA Administrator Charles Bolden explaining the importance of getting Commercial Crew online – here.

Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida.  Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com
Two of the three United Launch Alliance (ULA) Delta IV heavy boosters for NASA’s upcoming Orion Exploration Flight Test-1 (EFT-1) mission were unveiled during a media event inside the Horizontal Integration Facility at Launch Complex 37 at Cape Canaveral Air Force Station in Florida. Kennedy Space Center Director Bob Cabana spoke to the media along with NASA Associate Administrator Robert Lightfoot and Tony Taliancich, ULA director of East Coast Launch Operations. Credit: Ken Kremer- kenkremer.com

Stay tuned here for Ken’s continuing Orion, Boeing, SpaceX, Orbital Sciences, commercial space, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken KremerDelta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com[/caption]

SpaceX CEO Elon Musk to Unveil Manned Dragon ‘Space Taxi’ on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA
Story updated[/caption]

SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.

Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.

The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.

Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.

Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:

“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.

The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.

NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX's Commercial Crew Development Round 2 agreement with NASA's Commercial Crew Program. Credit: NASA
NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX’s Commercial Crew Development Round 2 agreement with NASA’s Commercial Crew Program. Credit: NASA

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.

But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.

US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.

NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.

Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.

So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.

Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.

SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com