How Will Covid-19 affect the Future of Science?

The domes of the two first SPECULOOS telescopes, shortly after their installation in November 2016 at ESO's Paranal Observatory. The SPECULOOS Southern Observatory is designed to detect terrestrial exoplanets around nearby ultra cool stars and brown dwarfs. The VLT is visible in the background of this image.

The full ramifications of the recent novel coronavirus pandemic are not yet known, and probably won’t be known or even felt for quite some time. Entire industries have been shifted and shuttered over the course of only a few tumultuous weeks due to Covid-19. Some industries and professions have been able to adapt quickly, some have had to close down or to send their workers home, while others are faltering and collapsing.

Continue reading “How Will Covid-19 affect the Future of Science?”

Can wormholes act like time machines?

Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.
Artist illustration of a spacecraft passing through a wormhole to a distant galaxy. Image credit: NASA.

Time travel into the past is a tricky thing. We know of no single law of physics that absolutely forbids it, and yet we can’t find a way to do it, and if we could do it, the possibility opens up all sorts of uncomfortable paradoxes (like what would happen if you killed your own grandfather).

But there could be a way to do it. We just need to find a wormhole first.

Continue reading “Can wormholes act like time machines?”

BepiColombo captured images of Earth during its recent flyby

Farewell! Even though the BepiColombo mission launched for Mercury in 2018, it’s still hanging around the Earth – at least, briefly, as shown in this stunning image recently released by the European Space Agency.

In the image, the Earth hangs serenely in between BepiColumbo’s magnetometer boom (on the right) and its medium-gain antenna (on the left).

But the Earth flyby wasn’t without its tense moments. The spacecraft relies on solar power, and during the loop around Earth it had to spend some time in our planet’s shadow – and out of the sun. To prepare, the mission scientists made sure that BepiColombo was fully charged and nice and warm before the maneuver.

And on April 10, the date of the flyby, it all went swimmingly.

The spacecraft is on a long, winding journey sunwards towards the smallest planet in the solar system, making loop after loop first around Earth, then Venus a couple times, then Mercury itself half a dozen times before parking itself in orbit. The frequent loops are necessary because at launch BepiColombo was traveling at the same speed as the Earth in its orbit (29.78 km/s), and needs to match that of Mercury (47.36 km/s), and it does so by borrowing some energy from the planets themselves.

Once BepiColombo reaches Mercury, it will separate into two individual probes: the Mercury Planetary Orbiter and the Mercury Magnetospheric Orbiter. The twin orbiters will attempt to answer several challenging riddles about the planet nearest to the sun, like the origins of Mercury’s faint-but-still-there magnetic field and atmosphere, and the craters pitting its surface.

But it will take a long time to get there. BepiColombo’s final arrival at Mercury isn’t scheduled until December of 2025, showing how reaching the inner planets of our system can be sometimes more difficult than journeys outward – it turns out that doing planetary dances is more challenging than you might think.

An ocean floor bacteria has been found with a totally bizarre metabolism

Bacteria come in two basic forms: the kinds that use a lot of hydrogen, and the kinds that don’t. And recently researchers think they’ve found a new bacteria that appear to do both at the same time, allowing it to live in a variety of extreme environments, like the ocean floor.

Its name is Acetobacterium woodii, often shortened to A. woodii, and it seems like it’s a superhero of the small-sized world.

Continue reading “An ocean floor bacteria has been found with a totally bizarre metabolism”

Gravity is tested down to a scale smaller than the thickness of a human hair

Gravity was the first force of nature to be realized, and in the centuries since we first cracked the code of that all-pervasive pulling power, scientists have continually come up with clever ways to test our understanding. And it’s no surprise why: the discovery of a new wrinkle in the gravitational force could open up vistas of new physics, and maybe even the nature of reality itself.

Continue reading “Gravity is tested down to a scale smaller than the thickness of a human hair”

Thanks to COVID-19, nothing’s moving, and seismologists can tell

As the COVID-19 disease continues to wreak its viral havoc on the human population of Earth, governments around the world have closed their schools, shut down non-essential businesses, and told their citizens to stay at home as much as possible. In other words, there’s a lot less human activity on our planet, and it’s led to a detectable drop in seismic activity.

Continue reading “Thanks to COVID-19, nothing’s moving, and seismologists can tell”

Decaying Dark Matter Should be Visible Here in the Milky Way as a Halo Around the Galaxy

A simulated image of what the X-ray emission from dark matter might be. Image credit: Christopher Dessert, Nicholas L. Rodd, Benjamin R. Safdi, Zosia Rostomian (Berkeley Lab), based on data from the Fermi Large Area Telescope

Astronomers are very sure that dark matter exists, but they’re not sure at all what it’s made of.

The problem is that it isn’t just dark, it’s invisible. As far as we know, dark matter doesn’t emit light, absorb light, reflect light, refract light, scatter light, diffract light, or really have anything to do with light at all. This makes it hard to study. We know that dark matter exists, however, through its gravitational effects. Even though it’s invisible, it still has mass, and so the dark matter in our universe (which, by the way, makes up 85% of all the mass in the cosmos) can affect the motions of normal (or light-interacting) matter, like stars and galaxies.

Continue reading “Decaying Dark Matter Should be Visible Here in the Milky Way as a Halo Around the Galaxy”

Astronomers are hoping to see the very first stars and galaxies in the Universe

The epoch of reionization was when light from the first stars could travel through the early Universe. At this time, galaxies began assembling, as did black holes. The young galaxy JADES-GS-z7-01-QU went through a star burst phase during this time, and then stopped forming stars. Credit: Paul Geil & Simon Mutch/The University of Melbourne
The epoch of reionization was when light from the first stars could travel through the early Universe. At this time, galaxies began assembling, as did black holes. The young galaxy JADES-GS-z7-01-QU went through a star burst phase during this time, and then stopped forming stars. Credit: Paul Geil & Simon Mutch/The University of Melbourne

Sometimes it’s easy being an astronomer. When your celestial target is something simple and bright, the game can be pretty straightforward: point your telescope at the thing and just wait for all the juicy photons to pour on in.

But sometimes being an astronomer is tough, like when you’re trying to study the first stars to appear in the universe. They’re much too far away and too faint to see directly with telescopes (even the much-hyped James Webb Space Telescope will only be able to see the first galaxies, an accumulation of light from hundreds of billions of stars). To date, we don’t have any observations of the first stars, which is a major bummer.

Continue reading “Astronomers are hoping to see the very first stars and galaxies in the Universe”

The heliosphere looks a lot weirder than we originally thought

A model of the heliosphere as imagined by new research. Yes, it looks like an ugly croissant. Image courtesy of Merav Opher, et. al

Every second of every day, our sun spits out a stream of tiny high-energy particles, known as the solar wind. This wind blows throughout the solar system, extending far beyond the orbits of the planets and out into interstellar space.

But the farther from the sun the wind gets, the more slowly it streams, changing from the raging torrent that the inner planets experience (strong enough to cause the aurora) into nothing more than an annoying drizzle. And far enough away – about twice the orbit of Neptune – it meets and mingles with all the random bits of energetic junk just floating around amongst the stars.

Continue reading “The heliosphere looks a lot weirder than we originally thought”

Can You Spot a Planetary Nebula from a Few Blurry Pixels? Astronomers Can – Here’s How

A planetary nebula is one of the most beautiful objects in the universe. Formed from the decaying remnants of a mid-sized star like a sun, no two are alike. Cosmically ephemeral, they last for only about 10,000 years – a blink of a cosmic eye. And yet they are vitally important, as their processed elements spread and intermingle with the interstellar medium in preparation for forming a new generation of stars. So studying them is important for understanding stellar evolution. But unlike their stellar brethren, since no two are alike, it’s hard to efficiently pick them out of astronomical deep-sky surveys. Thankfully, a research team has recently developed a method for doing just that, and their work could open up the door to fully understanding the great circle of stellar life.

Continue reading “Can You Spot a Planetary Nebula from a Few Blurry Pixels? Astronomers Can – Here’s How”