Mountains, Gandalf! Red Planet Pictures Show Mars In The Eyes Of The Rovers

An image of distant mountains taken by Curiosity's navcam on July 11, 2014, Sol 685 of the mission. The rover is in Gale Crater (near the equator of Mars) making a trek to Mount Sharp (the unofficial name for Aeolis Mons). Credit: NASA/JPL-Caltech

Fancy a little Mars in your daily life? You need go no further than the excellent raw image archive that NASA generously provides on its website, showing the view from the Opportunity and Curiosity rovers as they make their way on the surface.

Opportunity is rolling along in its eleventh year of operations, busily exploring the west rim of Endeavour Crater. Below the jump is a stunning stitch-together of some of its latest images from space tweep Stu Atkinson, who runs a lovely blog called Road to Endeavour about the rover’s adventures. NASA also has an official blog that was last updated July 1.

The Curiosity rover is in Gale Crater near the Martian equator, heading towards Mount Sharp as NASA picks paths that are the softest for its damaged wheels. Panorama maker Andrew Bodrov recently put together a new 360-degree view of Curiosity’s mastcam, which encompasses 137 images taken on Sol 673. You can see that below the jump as well.

Panorama based on pictures taken by the Opportunity rover in July 2014. Credit: Panorama by Stu Atkinson, photos by NASA/JPL-Caltech/Cornell Univ./Arizona State Univ
Panorama based on pictures taken by the Opportunity rover in July 2014. Credit: Panorama by Stu Atkinson, photos by NASA/JPL-Caltech/Cornell Univ./Arizona State Univ


Mars Panorama – Curiosity rover: Martian solar day 673 in out-of-this-world

Below are a couple of more raw views from the Curiosity rover taken on Sol 685.

A view of one of Curiosity's wheels taken by the rover's navcam on July 11, 2014 (Sol 685). Credit: NASA/JPL-Caltech
A view of one of Curiosity’s wheels taken by the rover’s navcam on July 11, 2014 (Sol 685). Credit: NASA/JPL-Caltech
Martian dunes dominate the scene in this picture taken by the Curiosity rover's navcam on July 11, 2014 (Sol 685). The rover is in Gale Crater, an equatorial region, on its way to Aeolis Mons (Mount Sharp). Credit: NASA/JPL-Caltech
Martian dunes dominate the scene in this picture taken by the Curiosity rover’s navcam on July 11, 2014 (Sol 685). The rover is in Gale Crater, an equatorial region, on its way to Aeolis Mons (Mount Sharp). Credit: NASA/JPL-Caltech

And across Mars, some views from Opportunity on Sol 3721 of the mission. The rover is facing the elimination of its funding in 2015, although in budget discussions from February NASA said it does have a route for it to get money (if Congress approves).

A view from NASA's Curiosity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA's Curiosity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA's Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.
A view from NASA’s Opportunity rover on Sol 3721 as it explores Endeavour Crater. Credit: NASA/JPL-Caltech/Cornell Univ./Arizona State Univ.

Into The Black? Maybe Radio Bursts Are From Outside The Galaxy After All, Study Says

Image of the sky where the radio burst FRB 121102 was found, in the constellation Auriga. You can see its location with a green circle. At left is supernova remnant S147 and at right, a star formation area called IC 410. Credit: Rogelio Bernal Andreo (DeepSkyColors.com)

Where are these radio bursts coming from? Astronomers have heard these signals from the sky several times, but always with the same telescope (Parkes Observatory in Australia). There was debate about whether these were coming from inside or outside the galaxy, or even from Earth itself (given only the one observatory was detecting them.)

A new study with a different telescope, the Arecibo Observatory in Puerto Rico, concludes that the bursts are from outside the galaxy. This is the first time one of these bursts have been found in the northern hemisphere of the sky.

“Our result is important because it eliminates any doubt that these radio bursts are truly of cosmic origin,” stated Victoria Kaspi, an astrophysics researcher at McGill University who participated in the research. “The radio waves show every sign of having come from far outside our galaxy – a really exciting prospect.”

Fast radio bursts are a flurry of radio waves that last a few thousandths of a second, and at any given minute there are only seven of these in the sky on average, according to the Max Planck Institute for Radio Astronomy. Their cause is unknown. They could be anything from black holes, to neutron stars coming together, to the magnetic field of pulsars (a type of neutron star) flaring up — or something else.

Arecibo Observatory in Puerto Rico. Credit: NAIC - Arecibo Observatory, a facility of the NSF
Arecibo Observatory in Puerto Rico. Credit: NAIC – Arecibo Observatory, a facility of the NSF

The pulse was found Nov. 2, 2012 in the constellation Auriga. Astronomers believe it is from quite far away from measuring its plasma dispersion, or the slowdown of radio waves as they crash into interstellar electrons. This particular source had triple the maximum dispersion than what would be found inside the galaxy, astronomers stated.

“The brightness and duration of this event, and the inferred rate at which these bursts occur, are all consistent with the properties of the bursts previously detected by the Parkes telescope in Australia,” stated Laura Spitler, who led the research. (She was at Cornell University when the study began, but is now at the Max Planck Institute for Radio Astronomy in Bonn, Germany.)

But other research has been back-and-forth on whether these are actually extragalactic bursts. One 2013 paper supposed it could be colliding neutron stars from far away, while another said it could instead be nearby stars flaring up.

The research was published in the Astrophysical Journal and is also available in preprint version on Arxiv.

Source: McGill University and the Max Planck Institute for Radio Astronomy

Contest: Get Your Video On The International Space Station

A view of the International Space Station as seen by the last departing space shuttle crew, STS-135. Credit: NASA

If you’re starting your career, good with a video and love space, here’s your big chance to showcase your work in an exclusive screening location — the International Space Station! A new Lunar and Planetary Institute-led contest is inviting people to send in their videos to talk about how space helps out humanity. More details below the jump.

“Through the international Humans in Space Art Challenge, we invite you to explore ‘How will humans use space science, and technology to benefit humanity?’ and to express your answer creatively in a video three minutes long or less,” reads the description of the challenge.

“Video artwork can be of any style, featuring original animation, sketches, music, live action drama, poetry, dance, Rube Goldberg machines, apps, etc. … Individuals or teams of participants should include one clear reference to the International Space Station in their videos and can use space station footage if desired.”

The contest is open to “college students and early career professionals”, according to the webpage. The due date for the challenge is Nov. 15, 2014. Full requirements and contact information for the contest organizers are available on this page.

Found! Seven Dwarfs Surround The ‘Pinwheel Galaxy’ Field Of View

Seven new dwarf galaxies shine in the field of view surrounding M101, the Pinwheel Galaxy. Credit: Yale University

Using a unique type of telescope that includes long-range lenses, astronomers at Yale University have found seven dwarf galaxies surrounding the well-known Pinwheel Galaxy, M101.

It’s unclear if the septuplets are actually orbiting the pinwheel, or just happen to be in the same field of view. But astronomers at Yale say that this shows the so-called Dragonfly Telephoto Array is working well, and they are planning follow-up observations to see what else they can find.

“The previously unseen galaxies may yield important insights into dark matter and galaxy evolution, while possibly signaling the discovery of a new class of objects in space,” Yale University stated in a release.

The galaxies escaped detection before because their light is so diffuse, but this is what the telescope is designed to pick up. The telescope is constructed of eight telephoto lenses (similar to what you would use to photograph a sporting event) that include “special coating” to stop any light from scattering inside. The telescope is called “Dragonfly” because like an insect, it has multiple eyes for looking at things.

The Dragonfly Telephoto Array, a unique Yale University telescope used to look for diffuse light in galaxies. Credit: Yale University
The Dragonfly Telephoto Array, a unique Yale University telescope used to look for diffuse light in galaxies. Credit: Yale University

Follow-up observations will come with the Hubble Space Telescope. If it turns out that these galaxies are not bound to M101, the results will be equally interesting to astronomers.

“There are predictions from galaxy formation theory about the need for a population of very diffuse, isolated galaxies in the universe,” stated Allison Merritt, a Yale graduate student who led the research.

“It may be that these seven galaxies are the tip of the iceberg, and there are thousands of them in the sky that we haven’t detected yet.”

The research was published in Astrophysical Journal Letters and is also available in preprint version on Arxiv.

Source: Yale University

Water Or Not? Fresh Martian Trenches Primarily Due To Carbon Dioxide Freezes, Study Says

Mars Reconnaissance Orbiter
Artist Illustration of the Mars Reconnaissance Orbiter

Does liquid water currently flow on the surface of Mars? Fresh-looking trenches on the Red Planet have come under a lot of scrutiny, including a 2010 study concluding that 18 dune gullies were primarily formed by carbon dioxide freezing.

A new study looking at several more gullies comes to about the same conclusion. Researchers examined images of 356 sites, with each of these sites captured multiple times on camera. Of the 38 of these sites that showed changes since 2006, the researchers concluded site changes happened in the winter — when it’s too cold for any liquid water to flow.

This image covers a location that has been imaged several times to look for changes in gullies.  This is in the Terra Sirenum region, part of the southern highlands in the mid-latitudes.  Credit: NASA/JPL/University of Arizona.
This image covers a location that has been imaged several times to look for changes in gullies. This is in the Terra Sirenum region, part of the southern highlands in the mid-latitudes. Credit: NASA/JPL/University of Arizona.

“As recently as five years ago, I thought the gullies on Mars indicated activity of liquid water,” stated lead author Colin Dundas of the U.S. Geological Survey’s Astrogeology Science Center in Arizona.

“We were able to get many more observations, and as we started to see more activity and pin down the timing of gully formation and change, we saw that the activity occurs in winter.”

Observations were made using NASA’s long-running Mars Reconnaissance Orbiter mission, which has been in orbit there since 2006. The researchers said that these lengthy missions are important for examining and confirming findings, because they can revisit data over time and change their conclusions, as needed, as more evidence comes in. Pictures were taken by the High Resolution Imaging Science Experiment (HiRISE) camera.

A 164-yard (150-meter) wide swath of Martian surface at 37.7 degrees south latitude, 192.9 degrees east longitude shows gullies changing between passes of the Mars Reconnaissance Orbiter. The earlier image, at left, was taken May 30, 2007. Near the arrows on the image on right, which was taken May 31, 2013, is a "rubbly flow" near the channel's mouth. Credit: NASA/JPL-Caltech/Univ. of Arizona
A 164-yard (150-meter) wide swath of Martian surface. It shows gullies changing between passes of the Mars Reconnaissance Orbiter. The earlier image, at left, was taken May 30, 2007. Near the arrows on the image on right, which was taken May 31, 2013, is a “rubbly flow” near the channel’s mouth. Credit: NASA/JPL-Caltech/Univ. of Arizona

The first images of gullies in 2000 sparked speculation that liquid water could be responsible for changing the surface today. It’s true that Mars has water frozen in its poles, and observations with several NASA rovers show strong evidence that water once flowed on the surface. But, these trenches are unlikely to show evidence that liquid water is flowing right now.

“Frozen carbon dioxide, commonly called dry ice, does not exist naturally on Earth, but is plentiful on Mars. It has been linked to active processes on Mars such as carbon dioxide gas geysers and lines on sand dunes plowed by blocks of dry ice,” NASA stated.

“One mechanism by which carbon-dioxide frost might drive gully flows is by gas that is sublimating from the frost providing lubrication for dry material to flow. Another may be slides due to the accumulating weight of seasonal frost buildup on steep slopes.”

The team added that smaller features could be the result of liquid water, such as this recent study using MRO. It’ll be interesting to see what other data is churned up as the fleet of orbiters continues making observations, and other scientists weigh in on the results.

The work will be published in the journal Icarus.

Source: Jet Propulsion Laboratory

Black Sky: Virgin’s Spaceship Carrier Takes To Air For 150th Time

WhiteKnightTwo during a test flight in 2014, the 150th it has taken so far. Credit: Virgin Galactic

As Virgin Galactic gets ready for its first space test of SpaceShipTwo — a feat widely expected to take place later this year — the private company recently posted a new photo of the carrier aircraft that will bring the spaceship to altitude for its kick to orbit. Called WhiteKnightTwo, the aircraft completed its 150th flight.

The post comes not too long after Virgin and others commemorated the 10th anniversary of SpaceShipOne’s first flight into space. The company subsequently sent the spacecraft there again, winning the Ansari X-Prize.

The Scaled Composites spaceship sparked an agreement with Virgin Galactic to start what the companies call the world’s first spaceliner, Virgin Galactic. The first test flight has been pushed back several years during development. Virgin founder Richard Branson has said he is planning to be on the first flight, along with some of his family.

Photos: Readers Share Memories Of NASA’s Final Shuttle Launches

STS-135 Atlantis lifts off on July 8, 2011 with a crowd of people watching the event, the last launch of the shuttle program. Credit: Remco Timmermans

With the three-year anniversary this week of STS-135 — the final launch of the program — we invited readers of Universe Today to send in your pictures of shuttle experiences. We’ve been spoiled with several entries into our Flickr pool, which we’ve posted below.

Also, noted space tweep Remco Timmermans generously provided us with dozens of pictures, of which we chose just a few to represent his experiences at STS-135. That picture at the top gave us goosebumps. Down below you can see more of Remco’s shots (thank you!) and some of the best other shots that readers sent in.

NASA astronauts Mike Massimino (left) and Douglas Wheelock flank Elmo during a NASA tweetup in July 2011 for the last shuttle launch, STS-135. Credit: Remco Timmermans
NASA astronauts Mike Massimino (left) and Douglas Wheelock flank Elmo during a NASA tweetup in July 2011 for the last shuttle launch, STS-135. Credit: Remco Timmermans
A sign points to the NASA Tweetup location for STS-135, the final shuttle launch, in July 2011. Credit: Remco Timmermans
A sign points to the NASA Tweetup location for STS-135, the final shuttle launch, in July 2011. Credit: Remco Timmermans
Shuttle Atlantis prior to the last launch of the program, STS-135, in July 2011. Credit: Remco Timmermans
Shuttle Atlantis prior to the last launch of the program, STS-135, in July 2011. Credit: Remco Timmermans
Launch Pad 39A is illuminated by light prior to the launch of Atlantis for STS-135 in July 2011. Credit: Remco Timmermans
Launch Pad 39A is illuminated by light prior to the launch of Atlantis for STS-135 in July 2011. Credit: Remco Timmermans
The "Astrovan" (right) ferries the STS-135 crew to Launch Pad 39A prior to the July 8, 2011 launch, the last of the shuttle program. Credit: Remco Timmermans
The “Astrovan” (right) ferries the STS-135 crew to Launch Pad 39A prior to the July 8, 2011 launch, the last of the shuttle program. Credit: Remco Timmermans
One of the shuttle's external rocket boosters is towed back to port following the launch of STS-135 in July 2011, the last of the shuttle program. Source: Remco Timmermans
One of the shuttle’s external rocket boosters is towed back to port following the launch of STS-135 in July 2011, the last of the shuttle program. Source: Remco Timmermans

Thanks also to numerous other Universe Today contributors who posted pictures to our Flickr pool. We’ll include some samples below. Nathanial Burton-Bradford who provided a 3-D picture of Atlantis lifting off on its last flight (use red and blue glasses to view properly):

A 3-D picture of Atlantis lifting off on the last shuttle mission of the program, STS-135, on July 8, 2011. Credit:  Nathanial Burton-Bradford
A 3-D picture of Atlantis lifting off on the last shuttle mission of the program, STS-135, on July 8, 2011. Credit: Nathanial Burton-Bradford

Robert Karma provided several stunning pictures of STS-131, which featured Discovery, including one showing the shuttle rising high in the sky beside the American flag, and another with the moment the solid rocket boosters separated from Discovery:

STS-131 Discovery flies high in the sky following its launch Feb. 24, 2011. Credit: Robert Karma
STS-131 Discovery flies high in the sky following its launch Feb. 24, 2011. Credit: Robert Karma
The solid rocket boosters separate from Discovery during the flight of STS-131 on Feb. 24, 2011. Credit: Robert Karma
The solid rocket boosters separate from Discovery during the flight of STS-131 on Feb. 24, 2011. Credit: Robert Karma

Also, thanks to Ralph Hightower for providing this image of STS-135 on Flickr:

The STS-135 Atlantis launch viewed from the NASA Causeway in Florida on July 8, 2011. Credit:  Ralph Hightower
The STS-135 Atlantis launch viewed from the NASA Causeway in Florida on July 8, 2011. Credit: Ralph Hightower

Rosetta’s Comet Looks Like A Kidney Flying Through Space

The Rosetta spacecraft captured these pictures of its destination, Comet 67P/Churyumov-Gerasimenko, from 23,000 miles (37,000 kilometers) away on July 4, 2014. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Up for a little abstract art, anyone? The latest images of the nucleus of Rosetta’s comet makes it look like the celestial object is a kidney. Or perhaps a bean. But regardless of what you “see” in the shape, scientists agree that the comet’s heart certainly isn’t round.

It’s a tantalizing view as the spacecraft speeds towards Comet 67P/Churyumov-Gerasimenko for an August rendezvous. These pictures were taken just a few days ago from 23,000 miles (37,000 kilometers) away, and the spacecraft is drawing noticeably nearer every week. What will a closer view reveal?

“Irregular, elongated, and structured shapes are not uncommon for small bodies such as asteroids and comets,” stated the Max Planck Institute for Solar System Research in a release. “Of the five cometary nuclei that have been visited by spacecraft in close flybys so far, all are far from spherical.”

To illustrate, we’ve put some examples below of the other comets that have had close-up views:

Jets can be seen streaming out of the nucleus, or main body, of comet Hartley 2 in this image from NASA's EPOXI mission. The nucleus is approximately 2 kilometers (1.2 miles) long and .4 kilometers (.25 miles) across at the narrow "neck."  Credit: NASA/JPL-Caltech/UMD
Jets can be seen streaming out of the nucleus, or main body, of comet Hartley 2 in this image from NASA’s EPOXI mission. The nucleus is approximately 2 kilometers (1.2 miles) long and .4 kilometers (.25 miles) across at the narrow “neck.” Credit: NASA/JPL-Caltech/UMD
Halley's Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA
Halley’s Comet, as seen by the European Giotto probe. Credit: Halley Multicolor Camera Team, Giotto Project, ESA
NASA's Stardust-NExT mission took this image of comet Tempel 1 at 8:39 p.m. PST (11:39 p.m. EST) on Feb 14, 2011. The comet was first visited by NASA's Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell. Image brightened and enhanced to show additional detail.
NASA’s Stardust-NExT mission took this image of comet Tempel 1 at 8:39 p.m. PST (11:39 p.m. EST) on Feb 14, 2011. The comet was first visited by NASA’s Deep Impact mission in 2005. Credit: NASA/JPL-Caltech/Cornell. Image brightened and enhanced to show additional detail.
comet Borrelly's 5-mile (8-kilometer) long nucleus taken from more than 2,000 miles (3,400 kilometers) away. Picture from NASA's Deep Space 1 probe. Credit: NASA/JPL
Comet Borrelly’s 5-mile (8-kilometer) long nucleus taken from more than 2,000 miles (3,400 kilometers) away. Picture from NASA’s Deep Space 1 probe. Credit: NASA/JPL
The nucleus of Comet 81P/Wild taken by NASA's Stardust probe in 2004. Credit: NASA
The nucleus of Comet 81P/Wild taken by NASA’s Stardust probe in 2004. Credit: NASA

The new pictures from Rosetta come shortly after the spacecraft caught its comet tumbling through space. It’s not really known for sure what the nucleus will look like, although several artists have lent their ideas over the years. Luckily, the European Space Agency probe will give us a very close-up view of the comet, as it plans to deploy a lander called Philae to land on the comet’s surface in November.

Both Rosetta and Philae successfully awoke from hibernation earlier this year and all systems appear to be working well so far as they get ready for the close-up encounter with the comet. The spacecraft have been flying through space for about a decade, and will remain with Comet 67P/Churyumov-Gerasimenko as it sweeps to its closest approach to the sun in 2015, between the orbits of Earth and Mars.

Blast! Sun Pops Off A Moderate Solar Flare. Could Others Follow Soon?

A moderate solar flare erupts on the sun July 8, 2014 in this image from NASA's Solar Dynamics Observatory. Credit: NASA/SDO

With a watchful NASA spacecraft capturing its moves, the Sun sent off a “mid-level” solar flare on Tuesday (July 8) that you can watch (over and over again) in the video above. The Solar Dynamics Observatory caught the explosion around 12:20 p.m. EDT (4:20 p.m. UTC), which led into a coronal mass ejection that sent a surge of solar material into space.

Solar flares can be disruptive to Earth communications and also cause auroras in the atmosphere. In this case, the M6 solar flare created “short-lived impacts to high frequency radio communications on the sunlit side of Earth … as a result,” wrote the National Oceanic and Atmospheric Administration in a forecast July 8.

In this case, however, the coronal mass ejection (seen by the Solar Dynamics Observatory) is not expected to hit Earth. But with the Sun around its maximum of solar activity in the 11-year cycle, other eruptions could head into space in the coming days. M is considered a moderate flare and X the strongest kind.

“Solar activity is low, but the quiet is unlikely to persist,” wrote SpaceWeather.com in an update published today (July 10). “There are three sunspots with unstable magnetic fields capable of strong eruptions: AR2108, AR2109, AR2113. NOAA forecasters estimate a 75% chance of M-flares and 15% chance of X-flares on July 10th.”

This flare caused a surge in shortwave activity that you can hear in this audio file, recorded by New Mexico amateur astronomer Thomas Ashcraft. “Radio bursts such as these are sparked by shock waves moving through the sun’s atmosphere,” SpaceWeather added. “Set in motion by flares, these shock waves excite plasma instabilitties that emit static-y radio waves.”

‘Vulnerable’ Earth-Like Planets Could Survive With Friction: Study

Flexible planets: NASA is studying how planets in eccentric orbits flex due to tidal forces. At left is a planet with a thick ice shell, and at right a terrestrial-type planet. Credit: NASA's Goddard Space Flight Center

If you’re a potentially habitable world orbiting in a zone where liquid water can exist — and then a rude gas giant planet happens to disturb your orbit — that could make it difficult or impossible for life to survive.

But even in the newly eccentric state, a new study based on simulations shows that the orbit can be made more circular again quite quickly, taking only a few hundred thousand years to accomplish. The key is the tidal forces the parent star exerts on the planet as it moves in its orbit, flexing the interior and slowing the planet down to a circular orbit.

“We found some unexpected good news for planets in vulnerable orbits,” stated Wade Henning, a University of Maryland scientist who led the work and who is working at NASA’s Goddard Space Flight Center in Maryland. “It turns out these planets will often experience just enough friction to move them out of harm’s way and into safer, more-circular orbits more quickly than previously predicted.

The transition period wouldn’t be pretty, since NASA states the planets “would be driven close to the point of melting” or have a “nearly melted layer” on them. The interior could also host magma oceans, depending on how intense the friction is. But a softer planet flexes more easily, allowing it to generate heat, bleed that energy off into space and gradually settle into a circular orbit. When tidal heating ceases, then life could possibly take hold.

This artists' rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit:  Keck Observatory
This artists’ rendition shows a super-Earth, or low mass exoplanet, orbiting close to its parent star. Credit: Keck Observatory

Another possibility is the eccentric orbit itself may be enough to keep life happy, at least for a while. If the planet is colder and stiffer, and orbiting far from its star, it’s possible the tidal flexing would serve as an energy source for life to survive.

Think of a situation like Europa near Jupiter, where some scientists believe the moon could have a subsurface ocean heated by interactions with the gas giant.

The model covers planets that are between the size of Earth and 2.5 times larger, and future studies will aim to see how layers in the planet change over time.

Source: NASA