Doritos In Space

I’m all for the commercial use of space, but this might be a bit overboard. Back in March of this year, Ian reported on a fund raising scheme to help the United Kingdom’s physics and astronomy money woes. The scheme involved soliciting commercial companies to pay for advertising being beamed into space, supposedly directed towards potential extra terrestrial life. The manufacturer of Doritos snack chips stepped up, donating an undisclosed sum in exchange for transmitting their ad. But the Doritos people decided to turn the advertisement into a contest, and created the Doritos Broadcast Project, which invited the UK public to create a 30 second video clip that could be beamed out to the universe offering a snap shot of life on earth to anyone ‘out there’. According to a poll, 61% of the UK public believe this is just the start of communication with ET life and that we will enter into regular communication with an alien species at some stage in the future. See the winning commercial:

The winning space-ad entitled ‘Tribe’ was voted for by the British public and directed by 25-year-old Matt Bowron. It will officially be entered into the Guinness Book of Records and will be aired on the more conventional medium of television in the UK on Sunday, June 15th.

Does this really offer a “snapshot of life on Earth?” Is this the impression of ourselves we’d like to give to extraterrestrials?

The message is being pulsed out over a six-hour period from high-powered radars at the EISCAT European space station in the Arctic Circle. The University of Leicester has also been involved in the project from its inception.

EISCAT Director, Professor Tony van Eyken who will oversee the transmission said: “The signal is directed at a solar system just 42 light years away from Earth, in the ‘Ursa Major’ or Great Bear Constellation. Its star is very similar to our Sun and hosts a habitable zone that could harbor small life supporting planets similar to ours.”

Peter Charles, Head of the Doritos Broadcast Project said: “We are constantly looking to push the boundaries of advertising and this will go further than any brand has gone before. By broadcasting the winning ad to the Universe, Doritos is delivering a world first and Matt Bowron, the winner, will go down in advertising folklore. We also shouldn’t be too surprised if the first aliens start arriving on planet Earth immediately demanding a bag of Doritos.”

Wow.

Dr Nigel Bannister thinks the idea might stimulate extra public interest. “The idea of transmitting an ad into space is somewhat controversial but still of scientific interest,” he said.

“This could be a test for future very long range communications and it gives us an opportunity to tell the Universe we are here (in case someone out there is listening – like reversal of the SETI programme!).

“There could also be potential commercial interest in enterprises like this. Imagine one day that companies on Earth might wish to advertise to other planetary colonies within our solar system -for example if man ever moves to colonise Mars!”

Source: Space Daily

Crew Sees Object Float Away From Shuttle (Update)

Update: After a quick but thorough analysis of photos and video of the object and the “protuberance” on the shuttle tail fin, NASA officials say neither should pose any problem for the shuttle landing on Saturday. The object floating away was determined to be one of three thermal clips that are inside the rudder speed brake on the tail fin. They are normally fixed to the back end of the rudder, and NASA astronaut Terry Virts said it is common for these clips to be missing following a mission. Image analysts compared previous images of the clips to telephoto images taken by the crew today to determine it was one of the clips. The “protuberance” on the tail fin is considered to be “nominal” or normal, and was just a separation in the tail’s thermal cover that was enhanced by the lighting from the sun at that time, and does not pose a problem.
This morning around 6:30 am EDT, the crew of STS-124 activated the shuttle’s auxiliary power units to test the shuttle’s re-entry systems for Saturday’s scheduled landing. Everything checked out fine, but shortly afterward the crew reported seeing an object floating away from the shuttle. The crew was able to capture video of the object as it tumbled away. “We observed an object depart aft of the starboard wing,” Commander Mark Kelly said. “Looked like, and obviously it’s hard to tell dimensions and size looking out the aft windows, but it looked like it might have been a foot to a foot and a half in width. And we’ve got a pretty reasonable image of it.”

Additionally, the crew also noticed a protuberance on the shuttle’s tail fin, thought to be a small piece of thermal insulation. NASA TV reported that NASA officials are not currently overly concerned about the protuberance, but additional images are being taken by the crew and downloaded for review by experts in Houston.

NASA TV commentator Rob Navias it is not uncommon for objects to become dislodged from the payload bay or for ice from the engine bell to become dislodged after the shuttle has unusual movements, such as when auxiliary power units are activated or tested. However, the object is large enough that further review of the incident is warranted. There is no concern about the object re-contacting the shuttle, but it is being tracked from the ground.

NASA is also studying video plus digital stills of the area on the shuttle’s tail fin, at the intersection of the lower and top sections of the rudder that meet to form the speed brake, used during landing. All the aero surfaces of the rudder and speed brake were tested this morning, with five movements in either direction, and no unusual data was detected. NASA reports that all the landing systems appear to be in good shape to support entry and landing.

The area in question on the tail fin is covered with a reusable thermal protection system and it does have a thermal barrier seal. That seems to be where the slight “bump” as the crew called it, or protuberance is.

This morning Kelly, Pilot Ken Ham and flight engineer Ron Garan are honing in on their piloting skills by conducting a computer simulation of landing the shuttle.

There will be media interviews with the shuttle crew at about 11:50 this morning, where details of the object and protuberance might be discussed. Look for updates here.

News Sources: NASA TV, Spaceflightnow.com

Ulysses Mission to End After 17 Years

For more than 17 years the Ulysses spacecraft studied the sun, pioneering solar science and defining our knowledge of the sun’s heliosphere. But on July 1, the mission will end. The spacecraft has been slowly “dying” due a dwindling power supply which can no longer keep the spacecraft warm enough. But Ulysses lasted almost four times its expected lifespan and has forever changed the way scientists view the sun and its effect on the surrounding space.

Ulysses ends its career after revealing that the magnetic field emanating from the sun’s poles is much weaker than previously observed. This could mean the upcoming solar maximum period will be less intense than in recent history.

“Over almost two decades of science observations by Ulysses, we have learned a lot more than we expected about our star and the way it interacts with the space surrounding it,” said Richard Marsden, Ulysses project scientist and mission manager for the European Space Agency (ESA). “Solar missions have appeared in recent years, but Ulysses is still unique today. Its special point of view over the sun’s poles never has been covered by any other mission.”

Ulysses is in a six-year orbit around the Sun. Its long orbital path carries it out to Jupiter’s orbit and back again. The further it ventures from the Sun, the colder the spacecraft becomes. Once it drops to 2ºC, the spacecraft’s hydrazine fuel will freeze.

This has not been a problem in the past because Ulysses carries heaters to maintain a workable on-board temperature. The spacecraft is powered by the decay of a radioactive isotope and over the 17-plus years, the power it has been supplying has been steadily dropping. Now, the spacecraft no longer has enough power to run all of its communications, heating and scientific equipment simultaneously.

The spacecraft and its suite of 10 instruments had to be highly sensitive, yet robust enough to withstand some of the most extreme conditions in the solar system, including intense radiation while passing by the giant planet Jupiter’s north pole.

Ulysses was the first mission to survey the environment in space above and below the poles of the sun in the four dimensions of space and time. It showed the sun’s magnetic field is carried into the solar system in a more complicated manner than previously believed. Particles expelled by the sun from low latitudes can climb to high latitudes and vice versa, sometimes unexpectedly finding their way out to the planets. Ulysses also studied dust flowing into our solar system from deep space, and showed it was 30 times more abundant than astronomers suspected. In addition, the spacecraft detected helium atoms from deep space and confirmed the universe does not contain enough matter to eventually halt its expansion.

Ulysses has traveled over 8.6 billion kilometers (5.4 billion miles) during its lifetime.

“Ulysses has been a challenging mission since launch,” said Ed Massey, Ulysses project manager at JPL. “Its success required the cooperation and intellect of engineers and scientists from around the world.”

Ulysses has been a joint mission between NASA and ESA.

“When the last bits of data finally arrive, it surely will be tough to say goodbye,” said Nigel Angold, ESA’s Ulysses mission operations manager. “But any sadness I might feel will pale in comparison to the pride of working on such a magnificent mission. Although operations will be ending, scientific discoveries from Ulysses data will continue for years to come.”

News Source: JPL Press Release

The Latest in Space Fashion from NASA

NASA unveiled a new design of spacesuits for the Constellation program today. Astronauts will be donning the new suits on the first flights of the Orion spaceship, scheduled for 2015, on trips to the International Space Station, with additional EVA suits ready for the first missions to the moon, scheduled for 2020. The spacesuits feature rear entry, enhanced shoulder mobility and modular, interchangeable parts. The spacesuits will be designed and produced by Oceaneering International Inc. of Houston, Texas, which received a contract worth $183.8 million for 2008-2014.

NASA required two spacesuit system configurations for the Constellation program. The first type of spacesuit (Configuration One) will be used for launch and landing operations, as well as inside the spacecraft during an emergency like loss of pressurization of the Orion crew compartment.


Configuration Two will build upon Configuration One and will support lunar surface operations. While preparing to walk on the moon, the astronauts will be able to build their own personal Configuration Two spacesuits by replacing elements of Configuration One with elements specialized for surface operations.

Suits and support systems will be needed for as many as four astronauts on moon voyages and as many as six space station travelers. For short trips to the moon, the suit design will support a week’s worth of moon walks. The system also must be designed to support a significant number of moon walks during potential six-month lunar outpost expeditions. In addition, the spacesuit and support systems will provide contingency spacewalk capability and protection against the launch and landing environment, such as spacecraft cabin leaks.

Video of the new Constellation spacesuits.

Video of spacesuit tests.

Pdf. file for more info on the new spacesuits and the contract award.
Original News Source: NASA Press Release

Alien Mineral From Comet Dust Found in Earth’s Atmosphere

Astoundingly, about 40,000 tons of dust particles fall to Earth each year which originates from space “leftovers,” mostly from disintegrating comets and asteroid collisions. Scientists are very interested in this dust because of its pristine nature –it is made of the original building blocks of the solar system. Some of that dust also resides in Earth’s atmosphere, and for years, NASA has routinely collected cosmic and interplanetary dust from Earth’s stratosphere with high-altitude research aircraft. NASA announced today that a new mineral has been found from this atmospheric research, in material that likely came from a comet.


Usually, any unique dust particles found in the atmosphere are difficult to trace as far as their origin, and whether it came from a comet or other space debris. But this new mineral, a manganese silicide which has been named “Brownleeite,” was discovered within an interplanetary dust particle, or IDP, that appears to have originated from comet 26P/Grigg-Skjellerup. The comet was discovered in 1902 and reappears every 5 years. A new method of collecting IDPs was suggested by space scientist Scott Messenger, from Johnson Space Center. He predicted comet 26P/Grigg-Skjellerup was a source of dust grains that could be captured in Earth’s stratosphere at a specific time of the year.

In response to his prediction, NASA performed stratospheric dust collections, using an ER-2 high-altitude aircraft flown from NASA’s Dryden Flight Research Center at Edwards Air Force Base, Calif. The aircraft collected IDPs from this particular comet stream in April 2003. The new mineral was found in one of the particles. To determine the mineral’s origin and examine other dust materials, a powerful new transmission electron microscope was installed in 2005 at Johnson.

“When I saw this mineral for the first time, I immediately knew this was something no one had seen before,” said Keiko Nakamura-Messenger, also from Johnson Space Center. “But it took several more months to obtain conclusive data because these mineral grains were only 1/10,000 of an inch in size.”

“Because of their exceedingly tiny size, we had to use state-of-the-art nano-analysis techniques in the microscope to measure the chemical composition and crystal structure of Keiko’s new mineral,” said Lindsay Keller, Johnson space scientist and a co-discoverer of the new mineral. “This is a highly unusual material that has not been predicted either to be a cometary component or to have formed by condensation in the solar nebula.”

The mineral was surrounded by multiple layers of other minerals that also have been reported only in extraterrestrial rocks. There have been 4,324 minerals identified by the International Mineralogical Association, or IMA. This find adds one more mineral to that list.

Brownleeite, is named after Donald E. Brownlee, professor of astronomy at the University of Washington, Seattle. Brownlee founded the field of IDP research. The understanding of the early solar system established from IDP studies would not exist without his efforts. Brownlee also is the principal investigator of NASA’s Stardust mission.

Brownlee says he’s always been intrigued by minerals and now “it’s great to be one.”

Original News Source: PhysOrg, AP

Where In The Universe Challenge #8

Its time for another “Where in the Universe” challenge. I’ll admit, this one is a little unusual. And I’ll also admit, the picture here is just part of of a larger image. But, showing the entire image might give it away. Can you guess what this is? This challenge requires high energy for our readers to undertake, I know, and I appreciate everyone who has written to say how much they enjoy “Where in the Universe.” We search across the sky, across the galaxy, and across the universe to find unique images, and hopefully this challenge provides a welcome diversion to your day. Have you made a guess, formulated a speculation, or deduced a deduction? Or do you just know what this is? No peeking below until your guesses are in….

In honor of the successful launch of GLAST today, this image is in memory of the last orbiting gamma ray telescope, the Compton Gamma Ray Observatory. This is the all-sky map produced by the EGRET instrument, or the Energetic Gamma Ray Experiment Telescope. Here’s the full image:

This image shows the emissions from interactions between cosmic rays and the interstellar gas along the plane of our Galaxy, the Milky Way. Some point sources in this map are pulsars along the plane. For example, the Crab and Geminga pulsars are found near the extreme right side of the EGRET all-sky map. One of the major discoveries made by EGRET is the class of objects known as blazars – these are quasars that emit the majority of their electromagnetic energy in the 30 MeV to 30 GeV portion of the spectrum.

The Compton Gamma Ray Observatory was the second of NASA’s Great Observatories. Compton was launched on April 5, 1991 aboard the space shuttle Atlantis, and was safely deorbited and re-entered the Earth’s atmosphere on June 4, 2000.

How’d you do?

Image source: Compton Gamma Ray Observatory site

“Shake, Shake, Shake” Gets Soil into Phoenix TEGA

When Bill Boynton announced at a Phoenix lander team meeting earlier today that the troublesome, clumpy Martian soil now sits, finally, within the TEGA “oven” on Phoenix, the room erupted with cheers and a standing ovation. Boynton then launched a rendition of “Shake, Shake, Shake” he had cued-up on his laptop, and started dancing. If that mental image doesn’t make it clear, getting the soil into TEGA is big, and the entire Phoenix team is excited about the accomplishment. Boynton, who leads the investigations with the Thermal and Evolved Gas Analyzer instrument, and his team have been trying various methods for several days to get the stubborn soil through a screen and into TEGA. The instrument will heat the soil and analyze the gases released to check for water vapor and other chemicals in the soil.

Commands to vibrate the screen were sent to Phoenix for three separate days. Boynton said that the oven might have filled because of the cumulative effects of all the vibrating, or because of changes in the soil’s cohesiveness as it sat for days on the top of the screen.

“There’s something very unusual about this soil, from a place on Mars we’ve never been before,” said Phoenix Principal Investigator Peter Smith. “We’re interested in learning what sort of chemical and mineral activity has caused the particles to clump and stick together.”

Between the shaking and the other new technique developed with the robotic arm called “sprinkling,” Smith hopes they won’t encounter future problems with getting the soil where they want it to go. “Delivering the soil is something we’re getting better at everyday,” he added.

Tomorrow, Thursday June 12, commands will be sent for the TEGA to heat the soil. Initial results may be available on Friday.

“We’ll do a low temperature bake that will tell us how much ice is in the soil,” said Boynton. ” We really don’t expect there to be much ice in the soil since it has been sitting out in the sun and vibrated through the screen. It does look like the soil has changed.”

TEGA has eight ovens to “bake” soil samples. Once an oven is used, it can’t be emptied and used again, so Phoenix has just eight chances to analyze the soil.

While there’s been some debate about the characteristics of Martian arctic soil, Smith said most researchers on the Phoenix team believe it’s a matter of when and not if Phoenix will definitely prove there is water ice region the lander sits on. “There are very few people who don’t believe there’s ice under the soil,” he said. “There also could be a crusty layer of salt on top because of evaporation.”

“We all have a lot of confidence we’ll get down to the ice,” Boynton added. “We may have exposed some in the act of landing. The MECA instrument will help the debate on salt. In a week or two we hope to get enough data to address these speculations.”

MECA is the Microscopy, Electrochemistry, and Conductivity Analyzer, which contains four single wet chemistry labs that will dissolve small amounts of soil in water, to determine the pH and what minerals are in the soil. Those tests will be done later in the mission.

Plans for today’s activities for Phoenix include sprinkling Martian soil on the delivery port for the spacecraft’s Optical Microscope and taking additional photos for a high-resolution color panorama of the lander’s surroundings.

Original News Sources: Phoenix press conference, Phoenix press release

IAU Throws Pluto a Bone: “Plutoid”

Almost two years after the International Astronomical Union (IAU) General Assembly demoted Pluto from a “real” planet to the new category of dwarf planets, the IAU, as promised, has decided on a name for trans-Neptunian dwarf planets similar to Pluto. The name “Plutoid” was proposed and accepted by the IAU at its recent meeting in Oslo, Norway. Here’s the definition of a Plutoid: “Celestial bodies in orbit around the Sun at a distance greater than that of Neptune that have sufficient mass for their self-gravity to overcome rigid body forces so that they assume a hydrostatic equilibrium (near-spherical) shape, and that have not cleared the neighborhood around their orbit.” The two known and named Plutoids are Pluto and Eris. It is expected that more Plutoids will be named as science progresses and new discoveries are made, for example, when the New Horizons mission arrives at the Kuiper Belt region in 2015.

Ceres, however, although a dwarf planet, is not a Plutoid, as it is located in the asteroid belt between Mars and Jupiter. Astronomers believe that Ceres is the only object of its kind. Therefore, a separate category of Ceres-like dwarf planets may be defined and named at a later date.

The IAU has been responsible for naming planetary bodies and their satellites since the early 1900s, and oversees the assignment of names to surface features on bodies in the Solar System.

The IAU confirmed that in French plutoid is “plutoïde,” and in Spanish “plutoide.”

Sources: PhysOrg, International Astronomical Union

GLAST Blasts Off

A powerful new space observatory called GLAST launched successfully today, and will provide a huge leap in our capabilities to study gamma rays, the highest-energy form of light. The Gamma Ray Large Area Space Telescope will enable scientists to answer persistent questions about a broad range of topics, including supermassive black-holes, pulsars, cosmic rays, and searches for signals of new physics in the stars of our galaxy. GLAST blasted off at 12:05 pm EDT, after a brief delay regarding weather and concerns on the water suppression system at the launchpad. But the problems were cleared and the launch proceeded with no complications. Now, the big question is, what will be GLAST’s new name?

As per tradition, GLAST will be renamed with a more user friendly, non-acronym name following it’s successful launch and deployment. The vehicle will go into a parking orbit for about 55 minutes following launch, then the second stage will restart, burn for two minutes, coast for about 5 minutes, then the spacecraft will separate and deploy the solar arrays. That’s when the mission is officially underway.

In its first year of operations, GLAST will concentrate on using its high sensitivity to create a new map of the skies, which is expected to reveal between 5,000 and 10,000 new sources of gamma-rays, which are invisible to human eyes.

The GLAST spacecraft is about 9-feet high by 8-feet in diameter when stowed in the fairing section of the rocket. GLAST will become a little bit taller and much wider after it is launched into space, when the Ku-band antenna deploys and the solar arrays are extended.

With high sensitivity GLAST is the first imaging gamma-ray observatory to survey the entire sky every day. It will give scientists a unique opportunity to learn about the ever-changing universe at extreme energies. GLAST will detect thousands of gamma-ray sources, most of which will be supermassive black holes in the cores of distant galaxies.

The observatory will be a significant upgrade to the previous orbiting gamma-ray telescope, the Compton Gamma Ray Observatory. GLAST should make observations in days that took the Compton years to make.

“GLAST is about to open up the Universe to us in new and exciting ways,” said Steven Ritz, of Nasa’s Goddard Space Science Center, and the project’s chief scientist. “GLAST enables scientists to look under the hood and see how the universe works.”

The mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the U.S.

Sources: NASA TV, GLAST website

Phoenix Sprinkles Successfully

Successful Sprinkle

The Phoenix Mars Lander used its Robotic Arm during the mission’s 15th Martian sol to test the “sprinkling” method for delivering small samples of soil to instruments on the lander deck. The “movie” shown here is a sequence of four images from the spacecraft’s Surface Stereo Imager, and demonstrates the actions of Phoenix for a 20 minute period. The sprinkling was tested because a couple of days ago, the first attempt at bringing soil samples to the scientific instruments was unsuccessful. The soil, when just dumped as a whole onto Phoenix’s deck, clumped together and wouldn’t go through a screen that brings the materials to the TEGA instrument to analyze the soil. The sprinkling technique, by contrast, holds the scoop at a steady angle and vibrates the scoop by running the motorized rasp located beneath the scoop. This gently jostles some material out of the scoop to the target below.

This method seems to distribute the material better, and “unclumps” the frozen clods of soil. For this test, the target was near the upper end the cover of the Microscopy, Electrochemistry and Conductivity Analyzer instrument suite, or MECA. The cover is 20 centimeters (7.9 inches) across. The scoop is about 8.5 centimeters (3.3 inches) across.

Based on the test’s success in delivering a small quantity and fine-size particles, the Phoenix team plans to use the sprinkle method for delivering more samples to MECA and then to the Thermal and Evolved-Gas Analyzer, or TEGA. The delivery to MECA’s Optical Microscope, will be via the port in the MECA cover, visible at the bottom of the image.

Meanwhile, Phoenix will continue a set of atmospheric observation begun during the Martian evening on Tuesday in coordination with overhead passes of NASA’s Mars Reconnaissance Orbiter. These take advantage of opportunities for instruments on Phoenix and on the orbiter to examine the same column of atmosphere simultaneously from above and below.

“It allows us to put the Phoenix measurements into global perspective and gives a ground level calibration for the orbiter’s measurements,” said Phoenix Project Scientist Leslie Tamppari of the Jet Propulsion Laboratory.

Source: Phoenix News