A New Study Confirms That Gravity has Remained Constant for the Entire age of the Universe

The first image taken by the James Webb Space Telescope, featuring the galaxy cluster SMACS 0723. Credit: NASA, ESA, CSA, and STScI

For over a century, astronomers have known that the Universe has been expanding since the Big Bang. For the first eight billion years, the expansion rate was relatively consistent since it was held back by the force of gravitation. However, thanks to missions like the Hubble Space Telescope, astronomers have since learned that roughly five billion years ago, the rate of expansion has been accelerating. This led to the widely-accepted theory that a mysterious force is behind the expansion (known as Dark Energy), while some insist that the force of gravity may have changed over time.

This is a contentious hypothesis since it means that Einstein’s General Theory of Relativity (which has been validated nine ways from Sunday) is wrong. But according to a new study by the international Dark Energy Survey (DES) Collaboration, the nature of gravity has remained the same throughout the entire history of the Universe. These findings come shortly before two next-generation space telescopes (Nancy Grace Roman and Euclid) are sent to space to conduct even more precise measurements of gravity and its role in cosmic evolution.

Continue reading “A New Study Confirms That Gravity has Remained Constant for the Entire age of the Universe”

Astronomers Find a Waterworld Planet With Deep Oceans in the Habitable Zone

Artist's rendering of a super-Earth-type exoplanet, TOI 1452 b. Credit: Benoit Gougeon, Université de Montréal.

In the search for extrasolar planets, astronomers and astrobiologists generally pursue a policy of “follow the water.” This comes down to searching for planets that orbit with a star’s circumsolar habitable zone (HZ), where conditions are warm enough that liquid water can flow on its surface. The reason is simple: water is the only known solvent capable of supporting life and is required by all life on Earth. However, since the 1970s, scientists have speculated that there may be a class of rocky planets in our Universe that are completely covered in water.

With the explosion in confirmed exoplanets, scientists have been eager to find examples of this type of planet, so they study them more closely. Thanks to an international team of researchers led by the Institute for Research on Exoplanets (iREx) at the Université de Montréal, an exoplanet orbiting within its system’s HZ was recently discovered that could be completely covered in deep oceans. This “ocean world” (aka. “Waterworld”) could reveal things about the nature of habitability when it is the subject of follow-up observations using the James Webb Space Telescope (JWST).

Continue reading “Astronomers Find a Waterworld Planet With Deep Oceans in the Habitable Zone”

Here is Where Astronauts Might Land on the Moon

Shown here is a rendering of 13 candidate landing regions for Artemis III. Credits: NASA

In just four days, the inaugural mission of the Artemis Program will lift off from Kennedy Space Center in Florida! Dubbed Artemis I, this mission will see the Space Launch System (SLS) and Orion spacecraft achieve flight together for the first time. The mission will last between 39 and 42 days and consist of the uncrewed Orion flying beyond the Moon, farther than any spaceship has ever traveled, and then looping back around the Moon to return home. This flight, and the crewed Artemis II that will follow, are essentially the dress rehearsal for the long-awaited return to the Moon.

Designated Artemis III, this mission is scheduled to take place in 2025 and will see the “first woman and first person of color” set foot on the lunar surface. It will also be the first time in over 50 years (since Apollo 17 landed in 1972) that astronauts will venture beyond Low Earth Orbit (LEO). In preparation for this, NASA has identified 13 candidate regions in the Moon’s South Pole-Aitken Basin, which they recently shared with the public. Each region contains multiple potential sites where the Starship Human Landing System (HLS) will land.

Continue reading “Here is Where Astronauts Might Land on the Moon”

Want to Live on Mars? Here's Where the Water is

Mineral map of Mars showing the presence of patches that formed in the presence of water. Credit: ESA

When crewed missions begin to travel to Mars for the first time, they will need to be as self-sufficient as possible. Even when Mars and Earth are at the closest points in their orbits to each other every 26 months (known as “Opposition“), it can take six to nine months for a spacecraft to travel there. This makes resupply missions painfully impractical and means astronauts must pack plenty of supplies for the journey. They will also need to grow some of their food and leverage local resources to meet their needs, a process known as In-Situ Resource Utilization (ISRU).

In particular, astronauts will need to know where to find water on the Red Planet, which is no small challenge. Luckily, the European Space Agency (ESA) has created a mineral map showing the locations of aqueous minerals (rocks that have been chemically altered by water). This map was created by the Mars Orbital Catalog of Aqueous Alteration Signatures (MOCAAS) project and took over ten years to complete. When it comes time to select landing sites for crewed missions to Mars (in the next decade and beyond), maps like this will come in mighty handy!

Continue reading “Want to Live on Mars? Here's Where the Water is”

Gaze Into the Heart of NGC 1365, Captured by Webb

Close up of the NGC 1365 galaxy, based on data obtained by JWST. Credit: Schmidt, J./JWST

Astrophotographer Judy Schmidt (aka. Geckzilla, SpaceGeck) is at it again! Earlier this month, she released a processed image of the Great Barred Spiral Galaxy (NGC 1365). The James Webb Space Telescope (JWST) recently observed this iconic double-barred spiral galaxy, which resulted in the most-detailed look at this galaxy to date. This time, Schmidt shared a series of images via Twitter that provide a closer look at NGC 1365’s core region, a widefield view that shows the galaxy’s long arms, and lovely animation that shows the galaxy in near- and mid-infrared wavelengths.

Continue reading “Gaze Into the Heart of NGC 1365, Captured by Webb”

How Weak Will Astronauts Feel When They First set Foot on Mars After Months in Space?

Artist's concept of a bimodal nuclear rocket making the journey to the Moon, Mars, and other destinations in the Solar System. Credit: NASA

In the coming decade, in 2033, NASA and China intend to send astronauts to Mars for the first time in history. This presents numerous challenges, ranging from logistical and technical issues to ensuring that astronauts can deal with waste and have enough food and water for the months-long transit to and from Mars. But of course, there’s also the health and safety of the astronauts, who will be spending months traveling through space where they’ll be exposed to cosmic radiation and microgravity. There are even concerns that after months of exposure to microgravity, astronauts will have trouble adapting to Martian gravity.

To determine if these fears have merit, a team of space medicine experts from the Australian National University (ANU) developed a mathematical model to predict whether astronauts can safely travel to Mars and perform their duties once they arrive on the Red Planet. This model could be immensely valuable alongside all the other preparations that need to happen before astronauts set foot on Mars. It could also be used to assess the impact of short- and long-duration missions that take astronauts far beyond Low Earth Orbit (LEO) and the Earth-Moon system in the future.

Continue reading “How Weak Will Astronauts Feel When They First set Foot on Mars After Months in Space?”

Were Phobos and Deimos Once a Single Martian Moon That Split up? Not Likely, says New Study

A composite image of Mars and its two moons, Phobos (foreground) and Deimos (background). Credit: NASA/JPL/University of Arizona

The origin of Phobos and Deimos, the two Martian moons, has been a mystery to astronomers. These two bodies are a fraction of the size and mass of the Moon, measuring just 22.7 km (14 mi) and 12.6 km (7.83 mi) in diameter. Both have a rapid orbital period, taking just 7 hours, 39 minutes, and 12 seconds (Phobos) and 30 hours, 18 minutes, and 43 seconds (Deimos) to complete an orbit around Mars. Both are also irregular in shape, leading many to speculate that they were once asteroids that got kicked out of the Main Belt and were captured by Mars’ gravity.

There’s also the theory that Phobos and Deimos were once a single moon hit by a massive object, causing it to split up (aka. the “splitting hypothesis”). In a recent paper, an international team of scientists led by the Institute of Space and Astronautical Science (ISAS) revisited this hypothesis. They determined that a single moon in a synchronous orbit would not have produced two satellites as we see there today. Instead, they argue, the two moons would have collided before long, producing a debris ring that would have created an entirely new moon system.

Continue reading “Were Phobos and Deimos Once a Single Martian Moon That Split up? Not Likely, says New Study”

Artemis Astronauts Could Rely on Solar Cells Made out of Moon Dust

Artist impression of a Moon Base concept. Credit: ESA – P. Carril

Within the next decade, several space agencies and commercial space partners will send crewed missions to the Moon. Unlike the “footprints and flags” missions of the Apollo Era, these missions are aimed at creating a “sustained program of lunar exploration.” In other words, we’re going back to the Moon with the intent to stay, which means that infrastructure needs to be created. This includes spacecraft, landers, habitats, landing and launch pads, transportation, food, water, and power systems. As always, space agencies are looking for ways to leverage local resources to meet these needs.

This process is known as in-situ resource utilization (ISRU), which reduces costs by limiting the number of payloads that need to be launched from Earth. Thanks to new research by a team from the Tallinn University of Technology (TalTech) in Estonia, it may be possible for astronauts to produce solar cells using locally-sources regolith (moon dust) to create a promising material known as pyrite. These findings could be a game-changer for missions in the near future, which include the ESA’s Moon Village, NASA’s Artemis Program, and the Sino-Russian International Lunar Research Station (ILRS).

Continue reading “Artemis Astronauts Could Rely on Solar Cells Made out of Moon Dust”

Cyanobacteria Will be our Best Partner for Living on Mars

Illustration of a photobioreactor as a means of growing building materials on Mars. Credit: Joris Wegner/ZARM/Universität Bremen

Scientists, futurists, and fans of science fiction alike have all dreamed that someday, humans would set foot on Mars. With the dozens of robotic orbiters, landers, rovers, and aerial vehicles we have sent there since the turn of the century (and the crewed missions that will follow in the next decade), the prospect that humans might settle on the Red Planet is once again a popular idea. Granted, the challenges of getting people there are monumental, to say nothing of the challenges (and hazards) associated with living there.

No matter how many people are willing to make a one-way trip and commit to living on Mars, establishing an outpost of humanity there will require some serious innovation and creative thinking! According to a new study by an international research team led by the Center of Applied Space Technology and Microgravity (ZARM), cyanobacteria might be able to withstand the difficult conditions and even thrive in Martian soil. This research suggests that astronauts could create biomass on Mars that would create a biological cycle.

Continue reading “Cyanobacteria Will be our Best Partner for Living on Mars”

A New Image From Webb Shows Galaxy NGC 1365, Known to Have an Actively Feeding Supermassive Black Hole

The barred spiral galaxy NGC 1365. Credit: NASA/JPL-Caltech/Judy Schmidt

The James Webb Space Telescope continues to deliver stunning images of the Universe, demonstrating that the years of development and delays were well worth the wait! The latest comes from Judy Schmidt (aka. Geckzilla, SpaceGeck), an astrophotographer who processed an image taken by Webb of the barred spiral galaxy NGC 1365. Also known as the Great Barred Spiral Galaxy, NGC 1365 is a double-barred spiral galaxy consisting of a long bar and a smaller barred structure located about 56 million light-years away in the southern constellation Fornax.

Continue reading “A New Image From Webb Shows Galaxy NGC 1365, Known to Have an Actively Feeding Supermassive Black Hole”