Samples Returned From Mars Will be Protected by a Micrometeorite Shield

Micrometeorites are a potential hazard for any space mission, including NASA’s Mars Sample Return. Credits: NASA

In a few years, NASA and the ESA will conduct the long-awaited Mars Sample Return (MSR) mission. This mission will consist of a lander that will pick up the samples, an ascent vehicle that will send them to orbit, an orbiter that will return them to Earth, and an entry vehicle that will send them to the surface. This will be the first time samples obtained directly from Mars will be returned to Earth for analysis. The research this will enable is expected to yield new insights into the history of Mars and how it evolved to become what we see today.

Returning these samples safely to Earth requires that protective measures be implemented at every step, including transfer, ascent, transit, and re-entry. This is especially true when it comes to the Earth Entry System (EES), the disk-shaped vehicle that will re-enter Earth’s atmosphere at the end of the mission. In addition to a heat shield, engineers at NASA’s White Sands Test Facility (WSTF) near Las Cruces, New Mexico, are busy testing shielding that will protect the vehicle from micrometeorites and space debris during transit back to Earth and during re-entry.

Continue reading “Samples Returned From Mars Will be Protected by a Micrometeorite Shield”

A Black Hole is Hurling a jet of Material at its Neighboring Galaxy

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

It’s been a banner time for black hole research! In recent months, astrophysicists have announced the discovery of the most powerful gamma-ray burst ever recorded (due to the formation of a black hole), a monster black hole in our cosmic backyard, the frame-dragging effects of a binary black hole, and the remains of the 2017 Kilonova event (spoiler alert: it was a black hole). And with the help of citizen scientists, a team of astronomers recently discovered a unique black hole in a galaxy roughly one billion light-years away that’s hurling a relativistic jet at another galaxy.

Continue reading “A Black Hole is Hurling a jet of Material at its Neighboring Galaxy”

Mars Could Have Been Warm and wet, While Earth was Still a Glowing Ball of Molten Rock

Could Mars have been a "pale blue dot" while Earth was still forming? Credit: Planet Volumes

Since the 1970s, the ongoing exploration of Mars has revealed that the planet has had a most interesting history. While conditions there are not hospitable to life today, scientists know Mars was once a much warmer, wetter place, with flowing water on its surface. According to new research led by the University of Arizona (UoA), Mars may have been a “pale blue dot” covered with oceans while Earth was still a ball of slowly-cooling molten rock. This discovery could allow for new research into a previously-overlooked period in Mars’ geological history and the formation and evolution of the Solar System.

Continue reading “Mars Could Have Been Warm and wet, While Earth was Still a Glowing Ball of Molten Rock”

A Monster Black Hole has Been Found Right in our Backyard (Astronomically Speaking)

The cross-hairs mark the location of the newly discovered monster black hole. Credit: Sloan Digital Sky Survey/S. Chakrabart et al.

Black holes are among the most awesome and mysterious objects in the known Universe. These gravitational behemoths form when massive stars undergo gravitational collapse at the end of their lifespans and shed their outer layers in a massive explosion (a supernova). Meanwhile, the stellar remnant becomes so dense that the curvature of spacetime becomes infinite in its vicinity and its gravity so intense that nothing (not even light) can escape its surface. This makes them impossible to observe using conventional optical telescopes that study objects in visible light.

As a result, astronomers typically search for black holes in non-visible wavelengths or by observing their effect on objects in their vicinity. After consulting the Gaia Data Release 3 (DR3), a team of astronomers led by the University of Alabama Huntsville (UAH) recently observed a black hole in our cosmic backyard. As they describe in their study, this monster black hole is roughly twelve times the mass of our Sun and located about 1,550 light-years from Earth. Because of its mass and relative proximity, this black hole presents opportunities for astrophysicists.

Continue reading “A Monster Black Hole has Been Found Right in our Backyard (Astronomically Speaking)”

Astronomers Just saw the Most Powerful Gamma-ray Burst Ever Recorded

Artist’s impression of a gamma-ray burst. Credit: ESO/A. Roquette

Gamma-ray bursts (GRBs) are one of the most mysterious transient phenomena facing astronomers today. These incredibly energetic bursts are the most powerful electromagnetic events observed since the Big Bang and can last from a few milliseconds to many hours. Whereas longer bursts are thought to occur during supernovae, when massive stars undergo gravitational collapse and shed their outer layer to become black holes, shorter events have also been recorded when massive binary objects (black holes and neutron stars) merge.

These bursts are characterized by an initial flash of gamma rays and a longer-lived “afterglow” typically emitted in X-ray, ultraviolet, radio, and other longer wavelengths. In the early-morning hours on October 14th, 2022, two independent teams of astronomers using the Gemini South telescope observed the aftermath of a GRB designated GRB221009A. Located 2.4 billion light-years away in the Sagitta constellation, this event was perhaps the closes and most powerful explosion ever recorded and was likely triggered by a supernova that gave birth to a black hole.

Continue reading “Astronomers Just saw the Most Powerful Gamma-ray Burst Ever Recorded”

The Asteroid That Killed the Dinosaurs Also Flooded the World's Coastlines With a Catastrophic Tsunami

Earth and possibly its Moon were hit by impactors that killed off the dinosaurs
Artistic rendition of the Chicxulub impactor striking ancient Earth, with Pterosaur observing. Could pieces of the same impact swarm have hit the Moon, too? Credit: NASA

For decades, scientists have theorized that a massive impact caused the Cretaceous-Paleogene extinction event. This event occurred about 66 million years ago and caused the mass extinction of about 75% of all plant and animal species on Earth (including the non-avian dinosaurs). With the discovery of the massive Chicxulub crater in the Yucatan Peninsula (southern Mexico) in the 1970s, scientists concluded that they’d found the impact responsible. Based on all the available data, the Chicxulub Impact event is believed to have been as powerful as 100,000 billion metric tons (110,231 U.S tons) of TNT.

This blast was more powerful than all the nuclear devices in the world combined and sent an estimated 25 trillion metric tons (~27.5 US tons) of hot dust, ash, and steam into the atmosphere, creating a global winter. But according to new research led by the University of Michigan, an international team of geologists has determined that the impact also created a global tsunami. According to their findings, this tsunami was 30,000 times more powerful than the 2004 Indian Ocean tsunami, one of the largest and most devastating tsunamis on record.

Continue reading “The Asteroid That Killed the Dinosaurs Also Flooded the World's Coastlines With a Catastrophic Tsunami”

Hubble Examines the Wreckage From the 2017 Kilonova

Artist's impression of two neutron stars colliding, known as a "kilonova" event. Credits: Elizabeth Wheatley (STScI)

In August 2017, astronomers observed a Gravitational Wave (GW) signal that resulted from the merger of two neutron stars – known as a “kilonova” event. The aftermath of this event (GW170817) was studied by 70 ground-based and space-based observatories in multiple wavelengths. This was the first time astronomers observed a binary neutron star merger in terms of electromagnetic radiation (particularly gamma rays) and GWs. The energy released by this merger was comparable to that of a supernova, leading astronomers to theorize that it must have resulted in a black hole.

Two years later, the Hubble Space Telescope observed the remnant and noted the powerful afterglow and gamma-ray bursts (GRBs) created by the merger, which was consistent with a black hole. However, it would take several more years of analysis before scientists could draw a complete picture of what resulted from this explosive event. Using data from Hubble and several radio observatories, a team of researchers detected a rapidly-rotating disk of material around the black hole and a structured relativistic jet emanating from it.

Continue reading “Hubble Examines the Wreckage From the 2017 Kilonova”

Shortly Before They Collided, two Black Holes Tangled Spacetime up Into Knots

A binary black hole system, viewed from above. Image Credit: Bohn et al. (see http://arxiv.org/abs/1410.7775)

In February 2016, scientists at the Laser Interferometer Gravitational-Wave Observatory (LIGO) announced the first-ever detection of gravitational waves (GWs). Originally predicted by Einstein’s Theory of General Relativity, these waves are ripples in spacetime that occur whenever massive objects (like black holes and neutron stars) merge. Since then, countless GW events have been detected by observatories across the globe – to the point where they have become an almost daily occurrence. This has allowed astronomers to gain insight into some of the most extreme objects in the Universe.

In a recent study, an international team of researchers led by Cardiff University observed a binary black hole system originally detected in 2020 by the Advanced LIGO, Virgo, and Kamioki Gravitational Wave Observatory (KAGRA). In the process, the team noticed a peculiar twisting motion (aka. a precession) in the orbits of the two colliding black holes that was 10 billion times faster than what was noted with other precessing objects. This is the first time a precession has been observed with binary black holes, which confirms yet another phenomenon predicted by General Relativity (GR).

Continue reading “Shortly Before They Collided, two Black Holes Tangled Spacetime up Into Knots”

TESS has Resumed Normal Operations

An artist’s rendition of the Transiting Exoplanet Survey Satellite (TESS). Credit: NASA's Goddard Space Flight Center

In April 2018, NASA launched the Transiting Exoplanet Survey Satellite (TESS), the successor to the Kepler Space Telescope that revolutionized the exoplanet studies field. Like its predecessor, TESS has been scanning almost the entire sky for five years for extrasolar planets using the Transit Method. This consists of monitoring thousands of stars for periodic dips in brightness, which may indicate a planet passing in front of the star relative to the observer. To date, TESS has made 243 confirmed discoveries, with another 4562 candidates – or TESS Objects of Interest (TOI) – awaiting confirmation.

On Monday, October 10th, fans of the TESS mission and the research it conducts got a bit of a scare as the observatory experienced a malfunction and had to be put into safe mode. Three days later, at around 06:30 PM EDT (03:30 PM PDT) on October 13th, NASA announced that their engineers had successfully powered up the instrument and brought it back online. While technicians at NASA are still investigating the cause of the malfunction, the spacecraft is now back in its fine-pointing mode and has resumed its second extended mission (EM2).

Continue reading “TESS has Resumed Normal Operations”

A Black Hole Burps out Material, Years After Feasting on a Star

. Credit: DESY/Science Communication Lab

Originally predicted by Einstein’s Theory of General Relativity, black holes are the most extreme object in the known Universe. These objects form when stars reach the end of their life cycle, blow off their outer layers, and are so gravitationally powerful that nothing (not even light) can escape their surfaces. They are also of interest because they allow astronomers to observe the laws of physics under the most extreme conditions. Periodically, these gravitational behemoths will devoir stars and other objects in their vicinity, releasing tremendous amounts of light and radiation.

In October 2018, astronomers witnessed one such event when observing a black hole in a galaxy located 665 million light-years from Earth. While astronomers have witnessed events like this before, another team from the Harvard & Smithsonian Center for Astrophysics noticed something unprecedented when they examined the same black hole three years later. As they explained in a recent study, the black hole was shining very brightly because it was ejecting (or “burping”) leftover material from the star at half the speed of light. Their findings could provide new clues about how black holes feed and grow over time.

Continue reading “A Black Hole Burps out Material, Years After Feasting on a Star”