What is the Rotation of the Earth?

Earth seen by MESSENGER

What if someone were to tell you that at any given moment, you were traveling at speeds well in excess of the speed of sound? You might think they were crazy, given that – as best as you could tell – you were standing on solid ground, and not in the cockpit of a supersonic jet. Nevertheless, the statement is correct. At any given moment, we are all moving at a speed of about 1,674 kilometers an hour, thanks to the Earth’s rotation,

By definition, the Earth’s rotation is the amount of time that it takes to rotate once on its axis. This is, apparently, accomplished once a day – i.e. every 24 hours. However, there are actually two different kinds of rotation that need to be considered here. For one, there’s the amount of time it take for the Earth to turn once on its axis so that it returns to the same orientation compared to the rest of the Universe. Then there’s how long it takes for the Earth to turn so that the Sun returns to the same spot in the sky.

Continue reading “What is the Rotation of the Earth?”

Moonbase by 2022 For $10 Billion, Says NASA

Based on a series of articles that were recently made available to the public, NASA predicts it could build a base on the Moon by 2022, and for cheaper than expected. Credit: NASA

Returning to the Moon has been the fevered dream of many scientists and astronauts. Ever since the Apollo Program culminated with the first astronauts setting foot on the Moon on July 20th, 1969, we have been looking for ways to go back to the Moon… and to stay there. In that time, multiple proposals have been drafted and considered. But in every case, these plans failed, despite the brave words and bold pledges made.

However, in a workshop that took place in August of 2014, representatives from NASA met with Harvard geneticist George Church, Peter Diamandis from the X Prize Foundation and other parties invested in space exploration to discuss low-cost options for returning to the Moon. The papers, which were recently made available in a special issue of New Space, describe how a settlement could be built on the Moon by 2022, and for the comparatively low cost of $10 billion.

Continue reading “Moonbase by 2022 For $10 Billion, Says NASA”

Beyond WIMPs: Exploring Alternative Theories Of Dark Matter

Image from Dark Universe, showing the distribution of dark matter in the universe. Credit: AMNH

The standard model of cosmology tells us that only 4.9% of the Universe is composed of ordinary matter (i.e. that which we can see), while the remainder consists of 26.8% dark matter and 68.3% dark energy. As the names would suggest, we cannot see them, so their existence has had to be inferred based on theoretical models, observations of the large-scale structure of the Universe, and its apparent gravitational effects on visible matter.

Since it was first proposed, there have been no shortages of suggestions as to what Dark Matter particles look like. Not long ago, many scientists proposed that Dark Matter consists of Weakly-Interacting Massive Particles (WIMPs), which are about 100 times the mass of a proton but interact like neutrinos. However, all attempts to find WIMPs using colliders experiments have come up empty. As such, scientists have been exploring the idea lately that dark matter may be composed of something else entirely. Continue reading “Beyond WIMPs: Exploring Alternative Theories Of Dark Matter”

What Are The Benefits Of Volcanoes?

Tungurahua ("throat of fire"), an active stratovolcano in Ecuador. Credit: Patrick Taschler

Volcanoes are renowned for their destructive power. In fact, there are few forces of nature that rival their sheer, awesome might, or have left as big of impact on the human psyche. Who hasn’t heard of tales of Mt. Vesuvius erupting and burying Pompeii? There’s also the Minoan Eruption, the eruption that took place in the 2nd millennium BCE on the isle of Santorini and devastated the Minoan settlement there.

In Japan, Hawaii, South American and all across the Pacific, there are countless instances of eruptions taking a terrible toll. And who can forget modern-day eruptions like Mount St. Helens? But would it surprise you to know that despite their destructive power, volcanoes actually come with their share of benefits? From enriching the soil to creating new landmasses, volcanoes are actually a productive force as well.

Soil Enrichment:

Volcanic eruptions result in ash being dispersed over wide areas around the eruption site. And depending on the chemistry of the magma from which it erupted, this ash will be contain varying amounts of soil nutrients. While the most abundant elements in magma are silica and oxygen, eruptions also result in the release of water, carbon dioxide (CO²), sulfur dioxide (SO²), hydrogen sulfide (H²S), and hydrogen chloride (HCl), amongst others.

In addition, eruptions release bits of rock such as potolivine, pyroxene, amphibole, and feldspar, which are in turn rich in iron, magnesium, and potassium. As a result, regions that have large deposits of volcanic soil (i.e. mountain slopes and valleys near eruption sites) are quite fertile. For example, most of Italy has poor soils that consist of limestone rock.

The area around the volcano is now densely populated. Credit: Wikipedia Commons/Jeffmatt
The area around the volcano is now densely populated. Credit: Wikipedia Commons/Jeffmatt

But in the regions around Naples (the site of Mt. Vesuvius), there are fertile stretches of land that were created by volcanic eruptions that took place 35,000 and 12,000 years ago. The soil in this region is rich because volcanic eruption deposit the necessary minerals, which are then weathered and broken down by rain. Once absorbed into the soil, they become a steady supply of nutrients for plant life.

Hawaii is another location where volcanism led to rich soil, which in turn allowed for the emergence of thriving agricultural communities. Between the 15th and 18th centuries on the islands of Kauai, O’ahu and Molokai, the cultivation of crops like taros and sweet potatoes allowed for the rise of powerful chiefdoms and the flowering of the culture we associate with Hawaii today.

Volcanic Land Formations:

In addition to scattering ash over large areas of land, volcanoes also push material to the surface that can result in the formation of new islands. For example, the entire Hawaiian chain of islands was created by the constant eruptions of a single volcanic hot spot. Over hundreds of thousands of years, these volcanoes breached the surface of the ocean becoming habitable islands, and rest stops during long sea journeys.

This is the case all across the Pacific, were island chains such as Micronesia, the Ryukyu Islands (between Taiwan and Japan), the Aleutian Islands (off the coast of Alaska), the Mariana Islands, and Bismark Archipelago were all formed along arcs that are parallel and close to a boundary between two converging tectonic plates.

The island of Santorini, Greece. Credit: EOS/NASA/ Public Domain
The island of Santorini, Greece. Credit: EOS/NASA/ Public Domain

Much the same is true of the Mediterranean. Along the Hellenic Arc (in the eastern Mediterranean), volcanic eruptions led to the creation of the Ionian Islands, Cyprus and Crete. The nearby South Aegean Arc meanwhile led to the formation of Aegina, Methana, Milos, Santorini and Kolumbo, and Kos, Nisyros and Yali. And in the Caribbean, volcanic activity led to the creation of the Antilles archipelago.

Where these islands formed, unique species of plants and animals evolved into new forms on these islands, creating balanced ecosystems and leading to new levels of biodiversity.

Volcanic Minerals and Stones:

Another benefits to volcanoes are the precious gems, minerals and building materials that eruptions make available. For instance, stones like pumice volcanic ash and perlite (volcanic glass) are all mined for various commercial uses. These include acting as abrasives in soaps and household cleaners. Volcanic ash and pumice are also used as a light-weight aggregate for making cement.

The finest grades of these volcanic rocks are used in metal polishes and for woodworking. Crushed and ground pumice are also used for loose-fill insulation, filter aids, poultry litter, soil conditioner, sweeping compound, insecticide carrier, and blacktop highway dressing.

The roof of the Pantheon, as seen from nearby rooftops in Roe. Credit: Public Domain/Anthony Majanlahti
The roof of the Pantheon, as seen from nearby rooftops in Roe. Credit: Public Domain/Anthony Majanlahti

Perlite is also used as an aggregate in plaster, since it expands rapidly when heated. In precast walls, it too is used as an aggregate in concrete. Crushed basalt and diasbase are also used for road metal, railroad ballast, roofing granules, or as protective arrangements for shorelines (riprap). High-density basalt and diabase aggregate are used in the concrete shields of nuclear reactors.

Hardened volcanic ash (called tuff) makes an especially strong, lightweight building material. The ancient Romans combined tuff and lime to make a strong, lightweight concrete for walls, and buildings. The roof of the Pantheon in Rome is made of this very type of concrete because it’s so lightweight.

Precious metals that are often found in volcanoes include sulfur, zinc, silver, copper, gold, and uranium. These metals have a wide range of uses in modern economies, ranging from fine metalwork, machinery and electronics to nuclear power, research and medicine. Precious stones and minerals that are found in volcanoes include opals, obsidian, fire agate, flourite, gypsum, onyx, hematite, and others.

Global Cooling:

Volcanoes also play a vital role in periodically cooling off the planet. When volcanic ash and compounds like sulfur dioxide are released into the atmosphere, it can reflect some of the Sun’s rays back into space, thereby reducing the amount of heat energy absorbed by the atmosphere. This process, known as “global dimming”, therefore has a cooling effect on the planet.

Sarychev volcano, (located in Russia's Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA
Sarychev volcano, (located in Russia’s Kuril Islands, northeast of Japan) in an early stage of eruption on June 12, 2009. Credit: NASA

The link between volcanic eruptions and global cooling has been the subject of scientific study for decades. In that time, several dips have been observed in global temperatures after large eruptions. And though most ash clouds dissipate quickly, the occasional prolonged period of cooler temperatures have been traced to particularly large eruptions.

Because of this well-established link, some scientists have recommended that sulfur dioxide and other  be released into the atmosphere in order to combat global warming, a process which is known as ecological engineering.

Hot Springs And Geothermal Energy:

Another benefit of volcanism comes in the form of geothermal fields, which is an area of the Earth characterized by a relatively high heat flow. These fields, which are the result of present, or fairly recent magmatic activity, come in two forms. Low temperature fields (20-100°C) are due to hot rock below active faults, while high temperature fields (above 100°C) are associated with active volcanism.

Geothermal fields often create hot springs, geysers and boiling mud pools, which are often a popular destination for tourists. But they can also be harnessed for geothermal energy, a form of carbon-neutral power where pipes are placed in the Earth and channel steam upwards to turn turbines and generate electricity.

Steam rising from the Nesjavellir Geothermal Power Station in Iceland. Credit: Gretar Ívarsson/Fir0002
Steam rising from the Nesjavellir Geothermal Power Station in Iceland. Credit: Gretar Ívarsson/Fir0002

In countries like Kenya, Iceland, New Zealand, the Phillipines, Costa Rica and El Salvador, geothermal power is responsible for providing a significant portion of the country’s power supply – ranging from 14% in Costa Rica to 51% in Kenya. In all cases, this is due to the countries being in and around active volcanic regions that allow for the presence of abundant geothermal fields.

Outgassing and Atmospheric Formation:

But by far, the most beneficial aspect of volcanoes is the role they play in the formation of a planet’s atmosphere. In short, Earth’s atmosphere began to form after its formation 4.6 billion eyars ago, when volcanic outgassing led to the creation of gases stored in the Earth’s interior to collect around the surface of the planet. Initially, this atmosphere consisted of hydrogen sulfide, methane, and 10 to 200 times as much carbon dioxide as today’s atmosphere.

After about half a billion years, Earth’s surface cooled and solidified enough for water to collect on it. At this point, the atmosphere shifted to one composed of water vapor, carbon dioxide and ammonia (NH³). Much of the carbon dioxide dissolved into the oceans, where cyanobacteria developed to consume it and release oxygen as a byproduct. Meanwhile, the ammonia began to be broken down by photolysis, releasing the hydrogen into space and leaving the nitrogen behind.

Another key role played by volcanism occurred 2.5 billion years ago, during the boundary between the Archaean and Proterozoic Eras. It was at this point that oxygen began to appear in our oxygen due to photosynthesis – which is referred to asthe “Great Oxidation Event”. However, according to recent geological studies, biomarkers indicate that oxygen-producing cyanobacteria were releasing oxygen at the same levels there are today. In short, the oxygen being produced had to be going somewhere for it not to appear in the atmosphere.

Roughly 2.5 billion years ago, towards the end of the Archaean Era, oxidation of our atmosphere began. Credit: ocean.si.edu
Roughly 2.5 billion years ago, towards the end of the Archaean Era, oxidation of our atmosphere began. Credit: ocean.si.edu

The lack of terrestrial volcanoes is believed to be responsible. During the Archaean Era, there were only submarine volcanoes, which had the effect of scrubbing oxygen from the atmosphere, binding it into oxygen containing minerals. By the Archaean/Proterozoic boundary, stabilized continental land masses arose, leading to terrestrial volcanoes. From this point onward, markers show that oxygen began appearing in the atmosphere.

Volcanism also plays a vital role in the atmospheres of other planets. Mercury’s thin exosphere of hydrogen, helium, oxygen, sodium, calcium, potassium and water vapor is due in part of volcanism, which periodically replenishes it. Venus’ incredibly dense atmosphere is also believed to be periodically replenished by volcanoes on its surface.

And Io, Jupiter’s volcanically active moon, has an extremely tenuous atmosphere of sulfur dioxide (SO²), sulfur monoxide (SO), sodium chloride (NaCl), sulfur monoxide (SO), atomic sulfur (S) and oxygen (O). All of these gases are provided and replenished by the many hundreds of volcanoes situated across the moon’s surface.

As you can see, volcanoes are actually a pretty creative force when all is said and done. In fact, us terrestrial organisms depend on them for everything from the air we breathe, to the rich soil that produces our food, to the geological activity that gives rise to terrestrial renewal and biological diversity.

We have written many articles about volcanoes for Universe Today. Here’s an article about extinct volcanoes, and here’s an article about active volcanoes. Here’s an article about volcanoes.

Want more resources on the Earth? Here’s a link to NASA’s Human Spaceflight page, and here’s NASA’s Visible Earth.

Astronomy Cast also has relevant episodes on the subject Earth, as part of our tour through the Solar System – Episode 51: Earth.

 

New Lenses To Help In The Hunt For Dark Energy

Since the 1990s, scientists have been aware that for the past several billion years, the Universe has been expanding at an accelerated rate. They have further hypothesized that some form of invisible energy must be responsible for this, one which makes up 68.3% of the mass-energy of the observable Universe. While there is no direct evidence that this “Dark Energy” exists, plenty of indirect evidence has been obtained by observing the large-scale mass density of the Universe and the rate at which is expanding.

But in the coming years, scientists hope to develop technologies and methods that will allow them to see exactly how Dark Energy has influenced the development of the Universe. One such effort comes from the U.S. Department of Energy’s Lawrence Berkeley National Lab, where scientists are working to develop an instrument that will create a comprehensive 3D map of a third of the Universe so that its growth history can be tracked.

Continue reading “New Lenses To Help In The Hunt For Dark Energy”

How Do We Terraform Mars?

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

As part of our continuing “Definitive Guide To Terraforming” series, Universe Today is happy to present our guide to terraforming Mars. At present, there are several plans to put astronauts and ever settlers on the Red Planet. But if we really want to live there someday, we’re going to need to do a complete planetary renovation. What will it take?

Despite having a very cold and very dry climate – not to mention little atmosphere to speak of – Earth and Mars have a lot in common. These include similarities in size, inclination, structure, composition, and even the presence of water on their surfaces. Because of this, Mars is considered a prime candidate for human settlement; a prospect that includes transforming the environment to be suitable to human needs (aka. terraforming).

That being said, there are also a lot of key differences that would make living on Mars, a growing preoccupation among many humans (looking at you, Elon Musk and Bas Lansdorp!), a significant challenge. If we were to live on the planet, we would have to depend rather heavily on our technology. And if we were going to alter the planet through ecological engineering, it would take a lot of time, effort, and megatons of resources!

The challenges of living on Mars are quite numerous. For starters, there is the extremely thin and unbreathable atmosphere. Whereas Earth’s atmosphere is composed of 78% nitrogen, 21% oxygen, and trace amounts of other gases, Mars’ atmosphere is made up of 96% carbon dioxide, 1.93% argon and 1.89% nitrogen, along with trace amounts of oxygen and water.

Artist's impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard
Artist’s impression of the terraforming of Mars, from its current state to a livable world. Credit: Daein Ballard

Mars’ atmospheric pressure also ranges from 0.4 – 0.87 kPa, which is the equivalent of about 1% of Earth’s at sea level. The thin atmosphere and greater distance from the Sun also contributes to Mars’ cold environment, where surface temperatures average 210 K (-63 °C/-81.4 °F). Add to this the fact that Mars’ lacks a magnetosphere, and you can see why the surface is exposed to significantly more radiation than Earth’s.

On the Martian surface, the average dose of radiation is about 0.67 millisieverts (mSv) per day, which is about a fifth of what people are exposed to here on Earth in the course of a year. Hence, if humans wanted to live on Mars without the need for radiation shielding, pressurized domes, bottled oxygen, and protective suits, some serious changes would need to be made. Basically, we would have to warm the planet, thicken the atmosphere, and alter the composition of said atmosphere.

Examples In Fiction:

In 1951, Arthur C. Clarke wrote the first novel in which the terraforming of Mars was presented in fiction. Titled The Sands of Mars, the story involves Martian settlers heating up the planet by converting Mars’ moon Phobos into a second sun, and growing plants that break down the Martians sands in order to release oxygen.

In 1984, James Lovelock and Michael Allaby wrote what is considered by many to be one of the most influential books on terraforming. Titled The Greening of Mars, the novel explores the formation and evolution of planets, the origin of life, and Earth’s biosphere. The terraforming models presented in the book actually foreshadowed future debates regarding the goals of terraforming.

Kim Stanley Robinson's Red Mars Trilogy. Credit: variety.com
Kim Stanley Robinson’s Red Mars Trilogy. Credit: variety.com

In 1992, author Frederik Pohl released Mining The Oort, a science fiction story where Mars is being terraformed using comets diverted from the Oort Cloud. Throughout the 1990s, Kim Stanley Robinson released his famous Mars TrilogyRed Mars, Green Mars, Blue Mars – which centers on the transformation of Mars over the course of many generations into a thriving human civilization.

In 2011, Yu Sasuga and Kenichi Tachibana produced the manga series Terra Formars, a series that takes place in the 21st century where scientists are attempting to slowly warm Mars. And in 2012, Kim Stanley Robinson released 2312, a story that takes place in a Solar System where multiple planets have been terraformed – which includes Mars (which has oceans).

Proposed Methods:

Over the past few decades, several proposals have been made for how Mars could be altered to suit human colonists. In 1964, Dandridge M. Cole released “Islands in Space: The Challenge of the Planetoids, the Pioneering Work“, in which he advocated triggering a greenhouse effect on Mars. This consisted of importing ammonia ices from the outer Solar System and then impacting them on the surface.

Since ammonia (NH³) is a powerful greenhouse gas, its introduction into the Martian atmosphere would have the effect of thickening the atmosphere and raising global temperatures. As ammonia is mostly nitrogen by weight, it could also provide the necessary buffer gas which, when combined with oxygen gas, would create a breathable atmosphere for humans.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill
Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

Another method has to do with albedo reduction, where the surface of Mars would be coated with dark materials in order to increase the amount of sunlight it absorbs. This could be anything from dust from Phobos and Deimos (two of the darkest bodies in the Solar System) to extremophile lichens and plants that are dark in color. One of the greatest proponents for this was famed author and scientist, Carl Sagan.

In 1973, Sagan published an article in the journal Icarus titled “Planetary Engineering on Mars“, where he proposed two scenarios for darkening the surface of Mars. These included transporting low albedo material and/or planting dark plants on the polar ice caps to ensure they absorbed more heat, melted, and converted the planet to more “Earth-like conditions”.

In 1976, NASA officially addressed the issue of planetary engineering in a study titled “On the Habitability of Mars: An Approach to Planetary Ecosynthesis“. The study concluded that photosynthetic organisms, the melting of the polar ice caps, and the introduction of greenhouse gases could all be used to create a warmer, oxygen and ozone-rich atmosphere.

In 1982, Planetologist Christopher McKay wrote “Terraforming Mars”, a paper for the Journal of the British Interplanetary Society. In it, McKay discussed the prospects of a self-regulating Martian biosphere, which included both the required methods for doing so and ethics of it. This was the first time that the word terraforming was used in the title of a published article, and would henceforth become the preferred term.

This was followed in 1984 by James Lovelock and Michael Allaby’s book, The Greening of Mars. In it, Lovelock and Allaby described how Mars could be warmed by importing chlorofluorocarbons (CFCs) to trigger global warming.

Artist's concept of a possible Mars terraforming plant. Credit: National Geographic Channel
Artist’s concept of a possible Mars terraforming plant, warming the planet through the introduction of hydrocarbons. Credit: nationalgeographic.com

In 1993, Mars Society founder Dr. Robert M. Zubrin and Christopher P. McKay of the NASA Ames Research Center co-wrote “Technological Requirements for Terraforming Mars“. In it, they proposed using orbital mirrors to warm the Martian surface directly. Positioned near the poles, these mirrors would be able to sublimate the CO2 ice sheet and contribute to global warming.

In the same paper, they argued the possibility of using asteroids harvested from the Solar System, which would be redirected to impact the surface, kicking up dust and warming the atmosphere. In both scenarios, they advocate for the use of nuclear-electrical or nuclear-thermal rockets to haul all the necessary materials/asteroids into orbit.

The use of fluorine compounds – “super-greenhouse gases” that produce a greenhouse effect thousands of times stronger than CO² – has also been recommended as a long term climate stabilizer. In 2001, a team of scientists from the Division of Geological and Planetary Sciences at Caltech made these recommendations in the “Keeping Mars warm with new super greenhouse gases“.

Where this study indicated that the initial payloads of fluorine would have to come from Earth (and be replenished regularly), it claimed that fluorine-containing minerals could also be mined on Mars. This is based on the assumption that such minerals are just as common on Mars (being a terrestrial planet) which would allow for a self-sustaining process once colonies were established.

This image illustrates possible ways methane might be added to Mars' atmosphere (sources) and removed from the atmosphere (sinks). NASA's Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying both types of activity occur on modern Mars. A longer caption discusses which are sources and which are sinks. (Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan)
NASA’s Curiosity Mars rover has detected fluctuations in methane concentration in the atmosphere, implying that it is added and removed all the time. (Image Credit: NASA/JPL-Caltech/SAM-GSFC/Univ. of Michigan)

Importing methane and other hydrocarbons from the outer Solar System – which are plentiful on Saturn’s moon Titan – has also been suggested. There is also the possibility of in-situ resource utilization (ISRU), thanks to the Curiosity rover’s discovery of a “tenfold spike” of methane that pointed to a subterranean source. If these sources could be mined, methane might not even need to be imported.

More recent proposals include the creation of sealed biodomes that would employ colonies of oxygen-producing cyanobacteria and algae on Martian soil. In 2014, the NASA Institute for Advanced Concepts (NAIC) program and Techshot Inc. began work on this concept, which was named the “Mars Ecopoiesis Test Bed“. In the future, the project intends to send small canisters of extremophile photosynthetic algae and cyanobacteria aboard a rover mission to test the process in a Martian environment.

If this proves successful, NASA and Techshot intend to build several large biodomes to produce and harvest oxygen for future human missions to Mars – which would cut costs and extend missions by reducing the amount of oxygen that has to be transported. While these plans do not constitute ecological or planetary engineering, Eugene Boland (chief scientist of Techshot Inc.) has stated that it is a step in that direction:

“Ecopoiesis is the concept of initiating life in a new place; more precisely, the creation of an ecosystem capable of supporting life. It is the concept of initiating “terraforming” using physical, chemical and biological means including the introduction of ecosystem-building pioneer organisms… This will be the first major leap from laboratory studies into the implementation of experimental (as opposed to analytical) planetary in situ research of greatest interest to planetary biology, ecopoiesis and terraforming.”

The "greening of Mars" would be a multi-tiered process, Credit: nationalgeographic.com
The “greening of Mars” would be a multi-tiered process, involving the importation of gases and terrestrial organisms to convert the planet over the course of many generations. Credit: nationalgeographic.com

Potential Benefits:

Beyond the prospect for adventure and the idea of humanity once again embarking on an era of bold space exploration, there are several reasons why terraforming Mars is being proposed. For starters, there is concern that humanity’s impact on planet Earth is unsustainable, and that we will need to expand and create a “backup location” if we intend to survive in the long run.

This school of though cites things like the Earth’s growing population – which is expected to reach 9.6 billion by mid-century – as well as the fact that by 2050, roughly two-thirds of the world’s population is expected to live in major cities. On top of that, there is the prospect of severe Climate Change, which – according to a series of scenarios computed by NASA – could result in life becoming untenable on certain parts of the planet by 2100.

Other reasons emphasize how Mars lies within our Sun’s “Goldilocks Zone” (aka. “habitable zone), and was once a habitable planet. Over the past few decades, surface missions like NASA’s Mars Science Laboratory (MSL) and its Curiosity rover have uncovered a wealth of evidence that points to flowing water existing on Mars in the deep past (as well as the existence of organic molecules).

Project Nomad, a concept for terraforming Mars using mobile, factory-skyscrapers. 2013 Skyscraper Competition. Credit: evolo.com/Antonio Ares Sainz, Joaquin Rodriguez Nuñez, Konstantino Tousidonis Rial
Project Nomad, a concept for the 2013 Skyscraper Competition that involved mobile factory-skyscrapers terraforming Mars. Credit: evolo.com/A.A. Sainz/J.R. Nuñez/K.T. Rial

In addition, NASA’s Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) (and other orbiters) have provided extensive information on Mars’ past atmosphere. What they have concluded is that roughly 4 billion years ago, Mars had abundant surface water and a thicker atmosphere. However, due to the loss of Mars’ magnetosphere – which may have been caused by a large impact or rapid cooling of the planet’s interior – the atmosphere was slowly stripped away.

Ergo, if Mars was once habitable and “Earth-like”, it is possible that it could be again one day. And if indeed humanity is looking for a new world to settle on, it only makes sense that it be on one that has as much in common with Earth as possible. In addition, it has also been argued that our experience with altering the climate of our own planet could be put to good use on Mars.

For centuries, our reliance on industrial machinery, coal and fossil fuels has had a measurable effect Earth’s environment. And whereas this has been an unintended consequence of modernization and development here on Earth; on Mars, the burning of fossil fuels and the regular release of pollution into the air would have a positive effect.

Credit: nationgeographic.com
Infographic showing a cost-estimate and time frame for the terraforming of Mars. Credit: NASA/National Geographic Channel/Discovery Channel

Other reasons include expanding our resources base and becoming a “post-scarcity” society. A colony on Mars could allow for mining operations on the Red Planet, where both minerals and water ice are abundant and could be harvested. A base on Mars could also act as a gateway to the Asteroid Belt, which would provide us with access to enough minerals to last us indefinitely.

Challenges:

Without a doubt, the prospect of terraforming Mars comes with its share of problems, all of which are particularly daunting. For starters, there is the sheer amount of resources it would take to convert Mars’ environment into something sustainable for humans. Second, there is the concern that any measure undertaken could have unintended consequences. And third, there is the amount of time it would take.

For example, when it comes to concepts that call for the introduction of greenhouse gases to trigger warming, the quantities required are quite staggering. The 2001 Caltech study, which called for the introduction of fluorine compounds, indicated that sublimating the south polar CO² glaciers would require the introduction of approximately 39 million metric tons of CFCs into Mars’ atmosphere – which is three times the amounts produced on Earth between 1972 and 1992.

Artist's conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons
Artist’s conception of a terraformed Mars. Credit: Ittiz/Wikimedia Commons

Photolysis would also begin to break down the CFCs the moment they were introduced, which would necessitate the addition of 170 kilotons every year to replenish the losses. And last, the introduction of CFCs would also destroy any ozone that was produced, which would undermine efforts to shield to surface from radiation.

Also, the 1976 NASA feasibility study indicated that while terraforming Mars would be possible using terrestrial organisms, it also recognized that the time-frames called for would be considerable. As it states in the study:

“No fundamental, insuperable limitation of the ability of Mars to support a terrestrial ecology is identified. The lack of an oxygen-containing atmosphere would prevent the unaided habitation of Mars by man. The present strong ultraviolet surface irradiation is an additional major barrier. The creation of an adequate oxygen and ozone-containing atmosphere on Mars may be feasible through the use of photosynthetic organisms. The time needed to generate such an atmosphere, however, might be several millions of years.”

The study goes on to state that this could be drastically reduced by creating extremophile organisms specifically adapted for the harsh Martian environment, creating a greenhouse effect and melting the polar ice caps. However, the amount of time it would take to transform Mars would still likely be on the order of centuries or millennia.

Mars-manned-mission vehicle (NASA Human Exploration of Mars Design Reference Architecture 5.0) feb 2009. Credit: NASA
Artist’s concept for a NASA manned-mission to Mars (Human Exploration of Mars Design Reference Architecture 5.0, Feb 2009). Credit: NASA

And of course, there is the problem of infrastructure. Harvesting resources from other planets or moons in the Solar System would require a large fleet of space haulers, and they would need to be equipped with advanced drive systems to make the trip in a reasonable amount of time. Currently, no such drive systems exist, and conventional methods – ranging from ion engines to chemical propellants – are neither fast or economical enough.

To illustrate, NASA’s New Horizons mission took more than 11 years to get make its historic rendezvous with Pluto in the Kuiper Belt, using conventional rockets and the gravity-assist method. Meanwhile, the Dawn mission, which relied relied on ionic propulsion, took almost four years to reach Vesta in the Asteroid Belt. Neither method is practical for making repeated trips to the Kuiper Belt and hauling back icy comets and asteroids, and humanity has nowhere near the number of ships we would need to do this.

On the other hand, going the in-situ route – which would involve factories or mining operations on the surface to release CO², methane or CFC-containing minerals into the air – would require several heavy-payload rockets to get all the machinery to the Red Planet. The cost of this would dwarf all space programs to date. And once they were assembled on the surface (either by robotic or human workers), these operations would have to be run continuously for centuries.

There is also several questions about the ethics of terraforming. Basically, altering other planets in order to make them more suitable to human needs raises the natural question of what would happen to any lifeforms already living there. If in fact Mars does have indigenous microbial life (or more complex lifeforms), which many scientists suspect, then altering the ecology could impact or even wipe out these lifeforms. In short, future colonists and terrestrial engineers would effectively be committing genocide.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

Given all of these arguments, one has to wonder what the benefits of terraforming Mars would be. While the idea of utilizing the resources of the Solar System makes sense in the long-run, the short-term gains are far less tangible. Basically, harvested resources from other worlds is not economically viable when you can extract them here at home for much less. And given the danger, who would want to go?

But as ventures like MarsOne have shown, there are plenty of human beings who are willing to make a one-way trip to Mars and act as Earth’s “first-wave” of intrepid explorers. In addition, NASA and other space agencies have been very vocal about their desire to explore the Red Planet, which includes manned missions by the 2030s. And as various polls show, public support is behind these endeavors, even if it means drastically increased budgets.

So why do it? Why terraform Mars for human use? Because it is there? Sure. But more importantly, because we might need to. And the drive and the desire to colonize it is also there. And despite the difficulty inherent in each, there is no shortage of proposed methods that have been weighed and determined feasible.In the end, all that’s needed is a lot of time, a lot of commitment, a lot of resources, and a lot of care to make sure we are not irrevocably harming life forms that are already there.

But of course, should our worst predictions come to pass, we may find in the end that we have little choice but to make a home somewhere else in the Solar System. As this century progresses, it may very well be Mars or bust!

We have written many interesting articles about terraforming here at Universe Today. Here’s The Definitive Guide To Terraforming, Could We Terraform the Moon?, Should We Terraform Mars?, How Do We Terraform Venus?, and Student Team Wants to Terraform Mars Using Cyanobacteria.

We’ve also got articles that explore the more radical side of terraforming, like Could We Terraform Jupiter?, Could We Terraform The Sun?, and Could We Terraform A Black Hole?

Astronomy Cast also has good episodes on the subject, like Episode 96: Humans to Mar, Part 3 – Terraforming Mars

For more information, check out Terraforming Mars  at NASA Quest! and NASA’s Journey to Mars.

And if you like the video, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!

Who Discovered Helium?

Small helium white dwarfs can be caused by a binary partner (NASA)

Scientists have understood for some time that the most abundant elements in the Universe are simple gases like hydrogen and helium. These make up the vast majority of its observable mass, dwarfing all the heavier elements combined (and by a wide margin). And between the two, helium is the second lightest and second most abundant element, being present in about 24% of observable Universe’s elemental mass.

Whereas we tend to think of Helium as the hilarious gas that does strange things to your voice and allows balloons to float, it is actually a crucial part of our existence. In addition to being a key component of stars, helium is also a major constituent in gas giants. This is due in part to its very high nuclear binding energy, plus the fact that is produced by both nuclear fusion and radioactive decay. And yet, scientists have only been aware of its existence since the late 19th century.

Continue reading “Who Discovered Helium?”

Kuiper Belt Objects Point The Way To Planet 9

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

On January 20th, 2016, researchers Konstantin Batygin and Michael E. Brown of Caltech announced that they had found evidence that hinted at the existence of a massive planet at the edge of the Solar System. Based on mathematical modeling and computer simulations, they predicted that this planet would be a super-Earth, two to four times Earth’s size and 10 times as massive. They also estimated that, given its distance and highly elliptical orbit, it would take 10,000 – 20,000 years to orbit the Sun.

Since that time, many researchers have responded with their own studies about the possible existence of this mysterious “Planet 9”. One of the latest comes from the University of Arizona, where a research team from the Lunar and Planetary Laboratory have indicated that the extreme eccentricity of distant Kuiper Belt Objects (KBOs) might indicate that they crossed paths with a massive planet in the past.

For some time now, it has been understood that there are a few known KBOs who’s dynamics are different than those of other belt objects. Whereas most are significantly controlled by the gravity of the gas giants planets in their current orbits (particularly Neptune), certain members of the scattered disk population of the Kuiper Belt have unusually closely-spaced orbits.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta), including Sedna (dark magenta), all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Another population of Kuiper belt objects (cyan) are forced into orbits that are perpendicular to the plane of the solar system and clustered in orientation. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit (orange) anti-aligned with the magenta orbits and perpendicular to the cyan orbits is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC)
The orbits of Neptune (magenta), Sedna (dark magenta), a series of Kuiper belt objects (cyan), and the hypothetical Planet 9 (orange). Credit: Caltech/R. Hurt (IPAC)

When Batygin and Brown first announced their findings back in January, they indicated that these objects instead appeared to be highly clustered with respect to their perihelion positions and orbital planes. What’s more, their calculation showed that the odds of this being a chance occurrence were extremely low (they calculated a probability of 0.007%).

Instead, they theorized that it was a distant eccentric planet that was responsible for maintaining the orbits of these KBOs. In order to do this, the planet in question would have to be over ten times as massive as Earth, and have an orbit that lay roughly on the same plane (but with a perihelion oriented 180° away from those of the KBOs).

Such a planet not only offered an explanation for the presence of high-perihelion Sedna-like objects – i.e. planetoids that have extremely eccentric orbits around the Sun. It would also help to explain where distant and highly inclined objects in the outer Solar System come from, since their origins have been unclear up until this point.

In a paper titled “Coralling a distant planet with extreme resonant Kuiper belt objects“, the University of Arizona research team – which included Professor Renu Malhotra, Dr. Kathryn Volk, and Xianyu Wang – looked at things from another angle. If in fact Planet 9 were crossing paths with certain high-eccentricity KBOs, they reasoned, it was a good bet that its orbit was in resonance with these objects.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

To break it down, small bodies are ejected  from the Solar System all the time due to encounters with larger objects that perturb their orbits. In order to avoid being ejected, smaller bodies need to be protected by orbital resonances. While the smaller and larger objects may pass within each others’ orbital path, they are never close enough that they would able to exert a significant influence on each other.

This is how Pluto has remained a part of the Solar System, despite having an eccentric orbit that periodically cross Neptune’s path. Though Neptune and Pluto cross each others orbit, they are never close enough to each other that Neptune’s influence would force Pluto out of our Solar System. Using this same reasoning, they hypothesized that the KBOs examined by Batygin and Brown might be in an orbital resonance with the Planet 9.

As Dr.  Malhotra, Volk and Wang told Universe Today via email:

“The extreme Kuiper belt objects we investigate in our paper are distinct from the others because they all have very distant, very elliptical orbits, but their closest approach to the Sun isn’t really close enough for them to meaningfully interact with Neptune. So we have these six observed objects whose orbits are currently fairly unaffected by the known planets in our Solar System. But if there’s another, as yet unobserved planet located a few hundred AU from the Sun, these six objects would be affected by that planet.”

After examining the orbital periods of these six KBOs – Sedna, 2010 GB174, 2004 VN112, 2012 VP113, and 2013 GP136 – they concluded that a hypothetical planet with an orbital period of about 17,117 years (or a semimajor axis of about 665 AU), would have the necessary period ratios with these four objects. This would fall within the parameters estimated by Batygin and Brown for the planet’s orbital period (10,000 – 20,000 years).

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Their analysis also offered suggestions as to what kind of resonance the planet has with the KBOs in question. Whereas Sedna’s orbital period would have a 3:2 resonance with the planet, 2010 GB174 would be in a 5:2 resonance, 2994 VN112 in a 3:1, 2004 VP113 in 4:1, and 2013 GP136 in 9:1. These sort of resonances are simply not likely without the presence of a larger planet.

“For a resonance to be dynamically meaningful in the outer Solar System, you need one of the objects to have enough mass to have a reasonably strong gravitational effect on the other,” said the research team. “The extreme Kuiper belt objects aren’t really massive enough to be in resonances with each other, but the fact that their orbital periods fall along simple ratios might mean that they each are in resonance with a massive, unseen object.”

But what is perhaps most exciting is that their findings could help to narrow the range of Planet 9’s possible location. Since each orbital resonance provides a geometric relationship between the bodies involved, the resonant configurations of these KBOs can help point astronomers to the right spot in our Solar System to find it.

But of course, Malhotra and her colleagues freely admit that several unknowns remain, and further observation and study is necessary before Planet 9 can be confirmed:

“There are a lot of uncertainties here. The orbits of these extreme Kuiper belt objects are not very well known because they move very slowly on the sky and we’ve only observed very small portions of their orbital motion. So their orbital periods might differ from the current estimates, which could make some of them not resonant with the hypothetical planet. It could also just be chance that the orbital periods of the objects are related; we haven’t observed very many of these types of objects, so we have a limited set of data to work with.”

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
Estimates of Planet Nine’s “possible” and “probable” zones. by French scientists based on a careful study of Saturn’s orbit and using mathematical models. Source: CNRS, Cote d’Azur and Paris observatories. Credit: Bob King

Ultimately, astronomers and the rest of us will simply have to wait on further observations and calculations. But in the meantime, I think we can all agree that the possibility of a 9th Planet is certainly an intriguing one! For those who grew up thinking that the Solar System had nine planets, these past few years (where Pluto was demoted and that number fell to eight) have been hard to swallow.

But with the possible confirmation of this Super-Earth at the outer edge of the Solar System, that number could be pushed back up to nine soon enough!

Further Reading: arXiv.org

The Early Universe Was All About Galactic Hook Ups

Artist's illustration of the Andromeda galaxy and the Milky Way, the two largest galaxies in the Local Group. Credit: NASA

In about 4 billion years, scientists estimate that the Andromeda and the Milky Way galaxies are expected to collide, based on data from the Hubble Space Telescope. And when they merge, they will give rise to a super-galaxy that some are already calling Milkomeda or Milkdromeda (I know, awful isn’t it?) While this may sound like a cataclysmic event, these sorts of galactic collisions are quite common on a cosmic timescale.

As an international group of researchers from Japan and California have found, galactic “hookups” were quite common during the early universe. Using data from the Hubble Space Telescope and the Subaru Telescope at in Mauna Kea, Hawaii, they have discovered that 1.2 billion years after the Big Bang, galactic clumps grew to become large galaxies by merging. As part of the Hubble Space Telescope (HST) “Cosmic Evolution Survey (COSMOS)”, this information could tell us a great about the formation of the early universe.

Continue reading “The Early Universe Was All About Galactic Hook Ups”

How Do We Terraform Venus?

Artist's impression of the surface of Venus. Credit: ESA/AOES

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Venus. It might be possible to do this someday, when our technology advances far enough. But the challenges are numerous and quite specific. 

The planet Venus is often referred to as Earth’s “Sister Planet”, and rightly so. In addition to being almost the same size, Venus and Earth are similar in mass and have very similar compositions (both being terrestrial planets). As a neighboring planet to Earth, Venus also orbits the Sun within its “Goldilocks Zone” (aka. habitable zone). But of course, there are many key difference between the planets that make Venus uninhabitable.

For starters, it’s atmosphere over 90 times thicker than Earth’s, its average surface temperature is hot enough to melt lead, and the air is a toxic fume consisting of carbon dioxide and sulfuric acid. As such, if humans want to live there, some serious ecological engineering  – aka. terraforming – is needed first. And given its similarities to Earth, many scientists think Venus would be a prime candidate for terraforming, even more so than Mars!

Over the past century, the concept of terraforming Venus has appeared multiple times, both in terms of science fiction and as the subject of scholarly study. Whereas treatments of the subject were largely fantastical in the early 20th century, a transition occurred with the beginning of the Space Age. As our knowledge of Venus improved, so too did the proposals for altering the landscape to be more suitable for human habitation.

Venus is also considered a prime candidate for terraforming. Credit: NASA/JPL/io9.com
Venus is also considered a prime candidate for terraforming. Credit: NASA/JPL/io9.com

Examples in Fiction:

Since the early 20th century, the idea of ecologically transforming Venus has been explored in fiction. The earliest known example is Olaf Stapleton’s Last And First Men (1930), two chapters of which are dedicated to describing how humanity’s descendants terraform Venus after Earth becomes uninhabitable; and in the process, commit genocide against the native aquatic life.

By the 1950s and 60s, owing to the beginning of the Space Age, terraforming began to appear in many works of science fiction. Poul Anderson also wrote extensively about terraforming in the 1950s. In his 1954 novel, The Big Rain, Venus is altered through planetary engineering techniques over a very long period of time. The book was so influential that the term term “Big Rain” has since come to be synonymous with the terraforming of Venus.

In 1991, author G. David Nordley suggested in his short story (“The Snows of Venus”) that Venus might be spun-up to a day-length of 30 Earth days by exporting its atmosphere of Venus via mass drivers. Author Kim Stanley Robinson became famous for his realistic depiction of terraforming in the Mars Trilogy – which included Red Mars, Green Mars and Blue Mars.

In 2012, he followed this series up with the release of 2312, a science fiction novel that dealt with the colonization of the entire Solar System – which includes Venus. The novel also explored the many ways in which Venus could be terraformed, ranging from global cooling to carbon sequestration, all of which were based on scholarly studies and proposals.

Artist's conception of a terraformed Venus, showing a surface largely covered in oceans. Credit: Wikipedia Commons/Ittiz
Artist’s conception of a terraformed Venus, showing a surface largely covered in oceans. Credit: Wikipedia Commons/Ittiz

Proposed Methods:

The first proposed method of terraforming Venus was made in 1961 by Carl Sagan. In a paper titled “The Planet Venus“, he argued for the use of genetically engineered bacteria to transform the carbon in the atmosphere into organic molecules. However, this was rendered impractical due to the subsequent discovery of sulfuric acid in Venus’ clouds and the effects of solar wind.

In his 1991 study “Terraforming Venus Quickly“, British scientist Paul Birch proposed bombarding Venus’ atmosphere with hydrogen. The resulting reaction would produce graphite and water, the latter of which would fall to the surface and cover roughly 80% of the surface in oceans. Given the amount of hydrogen needed, it would have to harvested directly from one of the gas giant’s or their moon’s ice.

The proposal would also require iron aerosol to be added to the atmosphere, which could be derived from a number of sources (i.e. the Moon, asteroids, Mercury). The remaining atmosphere, estimated to be around 3 bars (three times that of Earth), would mainly be composed of nitrogen, some of which will dissolve into the new oceans, reducing atmospheric pressure further.

Another idea is to bombard Venus with refined magnesium and calcium, which would sequester carbon in the form of calcium and magnesium carbonates. In their 1996 paper, “The stability of climate on Venus“, Mark Bullock and David H. Grinspoon of the University of Colorado at Boulder indicated that Venus’ own deposits of calcium and magnesium oxides could be used for this process. Through mining, these minerals could be exposed to the surface, thus acting as carbon sinks.

A mass of swirling gas and cloud at Venus’ south pole. Credit: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA/Univ. Oxford.
A mass of swirling gas and cloud at Venus’ south pole. Credit: ESA/VIRTIS/INAF-IASF/Obs. de Paris-LESIA/Univ. Oxford.

However, Bullock and Grinspoon also claim this would have a limited cooling effect – to about 400 K (126.85 °C; 260.33 °F) and would only reduce the atmospheric pressure to an estimated 43 bars. Hence, additional supplies of calcium and magnesium would be needed to achieve the 8×1020 kg of calcium or 5×1020 kg of magnesium required, which would most likely have to be mined from asteroids.

The concept of solar shades has also been explored, which would involve using either a series of small spacecraft or a single large lens to divert sunlight from a planet’s surface, thus reducing global temperatures. For Venus, which absorbs twice as much sunlight as Earth, solar radiation is believed to have played a major role in the runaway greenhouse effect that has made it what it is today.

Such a shade could be space-based, located in the Sun–Venus L1 Lagrangian point, where it would prevent some sunlight from reaching Venus. In addition, this shade would also serve to block the solar wind, thus reducing the amount of radiation Venus’ surface is exposed to (another key issue when it comes to habitability). This cooling would result in the liquefaction or freezing of atmospheric CO², which would then be depsotied on the surface as dry ice (which could be shipped off-world or sequestered underground).

Alternately, solar reflectors could be placed in the atmosphere or on the surface. This could consist of large reflective balloons, sheets of carbon nanotubes or graphene, or low-albedo material. The former possibility offers two advantages: for one, atmospheric reflectors could be built in-situ, using locally-sourced carbon. Second, Venus’ atmosphere is dense enough that such structures could easily float atop the clouds.

Artist's concept of a Venus cloud city — a possible future outcome of the High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center
Artist’s concept of a Venus cloud city – part of NASA’s High Altitude Venus Operational Concept (HAVOC) plan. Credit: Advanced Concepts Lab/NASA Langley Research Center

NASA scientist Geoffrey A. Landis has also proposed that cities could be built above Venus’ clouds, which in turn could act as both a solar shield and as processing stations. These would provide initial living spaces for colonists, and would act as terraformers, gradually converting Venus’ atmosphere into something livable so the colonists could migrate to the surface.

Another suggestion has to do with Venus’ rotational speed. Venus rotates once every 243 days, which is by far the slowest rotation period of any of the major planets. As such, Venus’s experiences extremely long days and nights, which could prove difficult for most known Earth species of plants and animals to adapt to. The slow rotation also probably accounts for the lack of a significant magnetic field.

To address this, British Interplanetary Society member Paul Birch suggested creating a system of orbital solar mirrors near the L1 Lagrange point between Venus and the Sun. Combined with a soletta mirror in polar orbit, these would provide a 24-hour light cycle.

It has also been suggested that Venus’ rotational velocity could be spun-up by either striking the surface with impactors or conducting close fly-bys using bodies larger than 96.5 km (60 miles) in diameter. There is also the suggestion of using using mass drivers and dynamic compression members to generate the rotational force needed to speed Venus up to the point where it experienced a day-night cycle identical to Earth’s (see above).

Atmosphere of Venus. Credit: ESA
Artist’s impression of Venus’ thick atmosphere, complete with lighting strikes and sulfuric acid rains. Credit: ESA

Then there’s the possibility of removing some of Venus’ atmosphere, which could accomplished in a number of ways. For starters, impactors directed at the surface would blow some of the atmosphere off into space. Other methods include space elevators and mass accelerators (ideally placed on balloons or platforms above the clouds), which could gradually scoop gas from the atmosphere and eject it into space.

Potential Benefits:

One of the main reasons for colonizing Venus, and altering its climate for human settlement, is the prospect of creating a “backup location” for humanity. And given the range of choices – Mars, the Moon, and the Outer Solar System – Venus has several things going for it the others do not. All of these highlight why Venus is known as Earth’s “Sister Planet”.

For starters, Venus is a terrestrial planet that is similar in size, mass and composition to Earth. This is why Venus has similar gravity to Earth, which is about of what we experience 90% (or 0.904 g, to be exact. As a result, humans living on Venus would be at a far lower risk of developing health problems associated with time spent in weightlessness and microgravity environments – such as osteoporosis and muscle degeneration.

Venus’s relative proximity to Earth would also make transportation and communications easier than with most other locations in the solar system. With current propulsion systems, launch windows to Venus occur every 584 days, compared to the 780 days for Mars. Flight time is also somewhat shorter since Venus is the closest planet to Earth. At it’s closest approach, it is 40 million km distant, compared to 55 million km for Mars.

On Feb. 5, 1974, NASA's Mariner 10 mission took this first close-up photo of Venus during 1st gravity assist flyby. Credit: NASA
On Feb. 5, 1974, NASA’s Mariner 10 mission took this first close-up photo of Venus during 1st gravity assist flyby. Credit: NASA

Another reason has to do with Venus’ runaway greenhouse effect, which is the reason for the planet’s extreme heat and atmospheric density. In testing out various ecological engineering techniques, our scientists would learn a great deal about their effectiveness. This information, in turn, will come in mighty handy in the ongoing fight against Climate Change here on Earth.

And in the coming decades, this fight is likely to become rather intense. As the NOAA reported in March of 2015, carbon dioxide levels in the atmosphere have now surpassed 400 ppm, a level not seen since the the Pliocene Era – when global temperatures and sea level were significantly higher. And as a series of scenarios computed by NASA show, this trend is likely to continue until 2100, with severe consequences.

In one scenario, carbon dioxide emissions will level off at about 550 ppm toward the end of the century, resulting in an average temperature increase of 2.5 °C (4.5 °F). In the second scenario, carbon dioxide emissions rise to about 800 ppm, resulting in an average increase of about 4.5 °C (8 °F). Whereas the increases predicted in the first scenario are sustainable, in the latter scenario, life will become untenable on many parts of the planet.

So in addition to creating a second home for humanity, terraforming Venus could also help to ensure that Earth remains a viable home for our species. And of course, the fact that Venus is a terrestrial planet means that it has abundant natural resources that could be harvested, helping humanity to achieve a “post-scarcity” economy.

Artist's conception of the High Altitude Venus Operational Concept (HAVOC) mission, a far-out concept being developed by NASA, approaching the planet. Credit: NASA Langley Research Center/YouTube (screenshot)
Artist’s concept of the High Altitude Venus Operational Concept (HAVOC) mission approaching the planet. Credit: NASA Langley Research Center/YouTube.

Challenges:

Beyond the similarities Venus’ has with Earth (i.e. size, mass and composition), there are numerous differences that would make terraforming and colonizing it a major challenge. For one, reducing the heat and pressure of Venus’ atmosphere would require a tremendous amount of energy and resources. It would also require infrastructure that does not yet exist and would be very expensive to build.

For instance, it would require immense amounts of metal and advanced materials to build an orbital shade large enough to cool Venus’ atmosphere to the point that its greenhouse effect would be arrested. Such a structure, if positioned at L1, would also need to be four times the diameter of Venus itself. It would have to be assembled in space, which would require a massive fleet of robot assemblers.

In contrast, increasing the speed of Venus’s rotation would require tremendous energy, not to mention a significant number of impactors that would have to cone from the outer solar System – mainly from the Kuiper Belt. In all of these cases, a large fleet of spaceships would be needed to haul the necessary material, and they would need to be equipped with advanced drive systems that could make the trip in a reasonable amount of time.

Currently, no such drive systems exist, and conventional methods – ranging from ion engines to chemical propellants – are neither fast or economical enough. To illustrate, NASA’s New Horizons mission took more than 11 years to get make its historic rendezvous with Pluto in the Kuiper Belt, using conventional rockets and the gravity-assist method.

Artist's impression of the surface of Venus. Credit: ESA/AOES
Artist’s impression of the surface of Venus. Credit: ESA/AOES

Meanwhile, the Dawn mission, which relied relied on ionic propulsion, took almost four years to reach Vesta in the Asteroid Belt. Neither method is practical for making repeated trips to the Kuiper Belt and hauling back icy comets and asteroids, and humanity has nowhere near the number of ships we would need to do this.

The same problem of resources holds true for the concept of placing solar reflectors above the clouds. The amount of material would have to be large and would have to remain in place long after the atmosphere had been modified, since Venus’s surface is currently completely enshrouded by clouds. Also, Venus already has highly reflective clouds, so any approach would have to significantly surpass its current albedo (0.65) to make a difference.

And when it comes to removing Venus’ atmosphere, things are equally challenging. In 1994, James B. Pollack and Carl Sagan conducted calculations that indicated that an impactor measuring 700 km in diameter striking Venus at high velocity would less than a thousandth of the total atmosphere. What’s more, there would be diminishing returns as the atmosphere’s density decreases, which means thousands of giant impactors would be needed.

In addition, most of the ejected atmosphere would go into solar orbit near Venus, and – without further intervention – could be captured by Venus’s gravitational field and become part of the atmosphere once again. Removing atmospheric gas using space elevators would be difficult because the planet’s geostationary orbit lies an impractical distance above the surface, where removing using mass accelerators would be time-consuming and very expensive.

Size comparison of Venus and Earth. Credit: NASA/JPL/Magellan
Size comparison of Venus and Earth. Credit: NASA/JPL/Magellan

Conclusion:

In sum, the potential benefits of terraforming Venus are clear. Humanity would have a second home, we would be able to add its resources to our own, and we would learn valuable techniques that could help prevent cataclysmic change here on Earth. However, getting to the point where those benefits could be realized is the hard part.

Like most proposed terraforming ventures, many obstacles need to be addressed beforehand. Foremost among these are transportation and logistics, mobilizing a massive fleet of robot workers and hauling craft to harness the necessary resources. After that, a multi-generational commitment would need to be made, providing financial resources to see the job through to completion. Not an easy task under the most ideal of conditions.

Suffice it to say, this is something that humanity cannot do in the short-run. However, looking to the future, the idea of Venus becoming our “Sister Planet” in every way imaginable – with oceans, arable land, wildlife and cities – certainly seems like a beautiful and feasible goal. The only question is, how long will we have to wait?

We have written many interesting articles about terraforming here at Universe Today. Here’s The Definitive Guide To Terraforming, Could We Terraform the Moon?, Should We Terraform Mars?, How Do We Terraform Mars? and Student Team Wants to Terraform Mars Using Cyanobacteria.

We’ve also got articles that explore the more radical side of terraforming, like Could We Terraform Jupiter?, Could We Terraform The Sun?, and Could We Terraform A Black Hole?

For more information, check out Terraforming Mars  at NASA Quest! and NASA’s Journey to Mars.

And if you liked the video posted above, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!