ESA’s ARIEL Mission Will Study the Atmospheres of More Than 1,000 Exoplanets

The ARIEL mission is a space telescope that will examine the atmospheres of at least 1000 exoplanets. Image Credit: ESA

We found our first exoplanets orbiting a pulsar in 1992. Since then, we’ve discovered many thousands more. Those were the first steps in identifying other worlds that could harbour life.

Now planetary scientists want to take the next step: studying exoplanet atmospheres.

The ESA’s ARIEL mission will be a powerful tool.

Continue reading “ESA’s ARIEL Mission Will Study the Atmospheres of More Than 1,000 Exoplanets”

Curiosity Sees a Strong Carbon Signature in a Bed of Rocks

This is the Stimson sandstone formation in Gale Crater on Mars. This is where the Curiosity Rover drilled the Edinburgh hole and found enriched Carbon 12. Image Credit: NASA/Caltech-JPL/MSSS

Carbon is critical to life, as far as we know. So anytime we detect a strong carbon signature somewhere like Mars, it could indicate biological activity.

Does a strong carbon signal in Martian rocks indicate biological processes of some type?

Continue reading “Curiosity Sees a Strong Carbon Signature in a Bed of Rocks”

The Moon’s Crust was Formed From a Frozen Slushy Magma

Magma ocean and first rocky crust on the Moon. Image Credit: NASA/Goddard Space Flight Center

Scientists’ detailed study of the Moon dates back to the Apollo missions when astronauts brought rock samples from the lunar surface back to Earth for analysis. Apollo 11 gathered samples from the lunar highland regions, the pale areas on the Moon’s surface easily seen from Earth. The highlands are made of a relatively light rock called anorthosite, which formed early in the history of the Moon, between 4.3 and 4.5 billion years ago.

There’s some mystery involved in the anorthosite formation on the Moon. The age of the anorthosite highlands doesn’t match how long it took for the Moon’s magma ocean to cool. But scientists behind a new study think they’ve solved that mystery.

Continue reading “The Moon’s Crust was Formed From a Frozen Slushy Magma”

Even Tiny Mimas Seems to Have an Internal Ocean of Liquid Water

Mimas, as imaged by NASA's Cassini spacecraft and processed by @kevinmgill

Data from the Cassini mission keeps fuelling discoveries. The latest discovery is that Saturn’s tiny moon Mimas may have an internal ocean. If it does, the moon joins a growing list of natural satellites in our Solar System that may harbour liquid water under their surfaces.

Continue reading “Even Tiny Mimas Seems to Have an Internal Ocean of Liquid Water”

Ice Peeks out of a Cliffside on Mars

This area, on the western edge of Milankovic Crater on Mars, has a thick deposit of sediment that covers a layer rich in ice. The ice is not obvious unless you look in color. In the red-green-blue images that are close to what the human eye would see, the ice looks bright white, while the surroundings are a rusty red. The ice stands out even more clearly in the infrared-red-blue images where it has a striking bluish-purple tone while the surroundings have a yellowish-grey color. The ice-rich material is most visible when the cliff is oriented east-west and is shielded from the sun as it arcs through the sky to the south. Image Credit: NASA/JPL/UArizona

The HiRISE (High-Resolution Imaging Science Experiment) camera on the Mars Reconnaissance Orbiter has captured another beauty. This time the image shows water ice peeking out from a cliffside on Mars. A layer of sediment obscures most of the ice, but fingers of it are visible.

Continue reading “Ice Peeks out of a Cliffside on Mars”

These Newly-Discovered Planets are Doomed

An artist’s rendition of what a planetary system similar to TOI-2337b, TOI-4329b, and TOI-2669b might look like, where a hot Jupiter-like exoplanet orbits an evolved, dying star. Image Credit: Karen Teramura/University of Hawai?i Institute for Astronomy

Astronomers have spied three more exoplanets. But the discovery might not last long. Each planet is in a separate solar system, and each orbits perilously close to its star. Even worse, all of the stars are dying.

The results?

Three doomed planets.

Continue reading “These Newly-Discovered Planets are Doomed”

Remember When Life was Found in a Martian Meteorite? Turns out, it was Just Geology

The Alan Hills meteorite is a part of history to Mars aficionados. It came from Mars and meteorite hunters discovered in Antarctica in 1984. Scientists think it’s one of the oldest chunks of rock to come from Mars and make it to Earth.

The meteorite made headlines in 1996 when a team of researchers said they found evidence of life in it.

Did they?

Continue reading “Remember When Life was Found in a Martian Meteorite? Turns out, it was Just Geology”

A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk

Scientists have captured an intruder object disrupting the protoplanetary disk—birthplace of planets—in Z Canis Majors (Z CMa), a star in the Canis Majoris constellation. This artist’s impression shows the perturber leaving the star system, pulling a long stream of gas from the protoplanetary disk along with it. Observational data from the Subaru Telescope, Karl G. Jansky Very Large Array, and Atacama Large Millimeter/submillimeter Array suggest the intruder object was responsible for the creation of these gaseous streams, and its “visit” may have other as yet unknown impacts on the growth and development of planets in the star system. Credit: ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)

When it comes to observing protoplanetary disks, the Atacama Large Millimetre/sub-millimetre Array (ALMA) is probably the champion. ALMA was the first telescope to peer inside the almost inscrutable protoplanetary disks surrounding young stars and watch planets forming. ALMA advanced our understanding of the planet-forming process, though our knowledge of the entire process is still in its infancy.

According to new observations, it looks like chaos and disorder are part of the process. Astronomers using ALMA have watched as a star got too close to one of these planet-forming disks, tearing a chunk away and distorting the disk’s shape.

What effect will it have on planetary formation?

Continue reading “A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk”

Nearby Supernovae Exploded Just a few Million Years Ago, Leading to a Wave of Star Formation Around the Sun

Artist's illustration of the Local Bubble with star formation occurring on the bubble's surface. Scientists have now shown how a chain of events beginning 14 million years ago with a set of powerful supernovae led to the creation of the vast bubble, responsible for the formation of all young stars within 500 light years of the Sun and Earth. Credit: Leah Hustak (STScI)

The Sun isn’t the only star in this galactic neighbourhood. Other stars also call this neighbourhood home. But what’s the neighbourhood’s history? What triggered the birth of all those stars?

A team of astronomers say they’ve pieced the history together and identified the trigger: a series of supernovae explosions that began about 14 million years ago.

Continue reading “Nearby Supernovae Exploded Just a few Million Years Ago, Leading to a Wave of Star Formation Around the Sun”

Nancy Grace Roman Telescope Will do its Own, Wide-Angle Version of the Hubble Deep Field

This synthetic image visualizes what a Roman ultra-deep field could look like. The 18 squares at the top of this image outline the area Roman can see in a single observation, known as its footprint. The inset at the lower-right zooms into one of the squares of Roman's footprint, and the inset at the lower-left zooms in even further. The image, which contains more than 10 million galaxies, was constructed from a simulation that produced a realistic distribution of the galaxies in the universe. Image Credit: Nicole Drakos, Bruno Villasenor, Brant Robertson, Ryan Hausen, Mark Dickinson, Henry Ferguson, Steven Furlanetto, Jenny Greene, Piero Madau, Alice Shapley, Daniel Stark, Risa Wechsler

Remember the Hubble Space Telescope’s Deep Field and Ultra-Deep Field images?

Those images showed everyone that what appears to be a tiny, empty part of the sky contains thousands of galaxies, some dating back to the Universe’s early days. Each of those galaxies can have hundreds of billions of stars. These early galaxies formed only a few hundred million years after the Big Bang. The images inspired awe in the human minds that took the time to understand them. And they’re part of history now.

The upcoming Nancy Grace Roman Space Telescope (NGRST) will capture its own version of those historical images but in wide-angle. To whet our appetites for the NGRST’s image, a group of astrophysicists have created a simulation to show us what it’ll look like.

Continue reading “Nancy Grace Roman Telescope Will do its Own, Wide-Angle Version of the Hubble Deep Field”