Astronomers Announce First Newborn Stars at Milky Way’s Core

The Galactic Center. Credit: Suzan Stolovy (SSC/Caltech), JPL-Caltech, NASA

[/caption]

Astronomers have found the first evidence of newborn stars at the center of the Milky Way, a region once thought to be inhospitable to the formation of new stars.

Solange Ramirez, the principal investigator of the research program at NASA’s Exoplanet Science Institute at Caltech, announced three objects during a press conference today as part of the 214th meeting of the American Astronomical Society meeting in Pasadena.

“These baby stars … are stars that have just ignited their core, and are just starting to produce light,” she said. “It is a very early phase.”

The discovery was made using the infrared vision of NASA’s Spitzer Space Telescope.

The heart of our spiral galaxy is cluttered with stars, dust, and gas, and at its very center, a supermassive black hole. Conditions there are harsh, with fierce stellar winds, powerful shock waves, and other factors that make it difficult for stars to form. Astronomers have known that stars can form in this chaotic place, but they’re baffled as to how this occurs. Confounding the problem is all the dust standing between us and center of our galaxy. Until now, nobody had
been able to definitively locate any baby stars.

“These stars are like needles in a haystack,” Ramirez said. “There’s no way to find them using optical light, because dust gets in the way. We needed Spitzer’s infrared instruments to cut through the dust and narrow in on the objects.”

Ramirez and her colleagues plan to look for additional baby stars in the future, and ultimately to piece together what types of conditions allow stars to form in such an inhospitable environment as our galaxy’s core.

“By studying individual stars in the galactic center, we can better understand how stars are formed in different interstellar environments,” said Deokkeun An, also of Caltech, who is lead author of a paper submitted for publication in the Astrophysical Journal.

“The Milky Way galaxy is just one of more than hundreds of billions of galaxies in the visible universe. However, our galaxy is so special because we can take a closer look at its individual stellar components.”

The core of the Milky Way is a mysterious place about 600 light-years across. While this is just a fraction of the size of entire the Milky Way, which is about 100,000 light-years across, the core is stuffed with 10 percent of all the gas in the galaxy — and loads of stars.

Before now, there were only a few clues that stars can form in the galaxy’s core. Astronomers had found clusters of massive adolescent stars, in addition to clouds of charged gas — a sign that new stars are beginning to ignite and ionize surrounding gas. Past attempts had been unsuccessful in finding newborn stars, or as astronomers call them, young stellar objects.

The astronomers looked at their candidate stars with Spitzer’s spectrograph — an instrument that breaks light apart to reveal its rainbow-like array of infrared colors. Molecules around stars leave imprints in their light, which the spectrograph can detect.

The results revealed three stars with clear signs of youth, for example certain warm, dense gases. These youthful features are found in other places in the galaxy where stars are being formed.

“It is amazing to me that we have found these stars,” said Ramirez. “The galactic center is a very interesting place. It has young stars, old stars, black holes, everything. We started mining a catalog of about one million sources and managed to find three young stars — stars that will help reveal the secrets at the core of the Milky Way.”

The young stellar objects are all less than about one million years old. They are embedded in cocoons of gas and dust, which will eventually flatten to disks that, according to theory, later lump together to form planets.

Source: AAS teleconference and press release (meeting teleconferences available via UStream)

The Curious Case of the Shrinking Star

Credit: NASA

The red supergiant star Betelgeuse is undoubtedly enormous. But it’s shrinking, and astronomers aren’t sure why.

Researchers at the University of California at Berkeley have been monitoring the star by aiming the Infrared Spatial Interferometer, atop Mt. Wilson in Southern California, toward the star’s home in the constellation Orion. Since 1993, the Betelgeuse star (pictured in a NASA image at left) has shrunk in diameter by more than 15 percent.

betelgeuse1
UC Berkeley physicist Charles Townes, who won the 1964 Nobel Prize in Physics for invention of the laser, cleans one of the large mirrors of the Infrared Spatial Interferometer. Credit: Cristina Ryan (2008)

Betelgeuse is so big that in our solar system it would reach to the orbit of Jupiter. Its radius is about five astronomical units, or five times the radius of Earth’s orbit. Its measured shrinkage means the star’s radius has shrunk by a distance equal to the orbit of Venus.

“To see this change is very striking,” said Charles Townes, a UC Berkeley professor emeritus of physics. “We will be watching it carefully over the next few years to see if it will keep contracting or will go back up in size.”

Townes and his colleague, Edward Wishnow, a research physicist at UC Berkeley, presented their findings at a press conference on Tuesday during the Pasadena meeting of the American Astronomical Society. The results also appeared June 1 in The Astrophysical Journal Letters.

Despite Betelgeuse’s diminished size, Wishnow pointed out that its visible brightness, or magnitude, which is monitored regularly by members of the American Association of Variable Star Observers, has shown no significant dimming over the past 15 years.

The ISI has been focusing on Betelgeuse for more than 15 years in an attempt to learn more about these giant massive stars and to discern features on the star’s surface, Wishnow said. He speculated that giant convection cells on the star’s surface might affect the measurements. Like convection granules on the Sun, the cells are so large that they bulge out from the surface. Townes and a former graduate student observed a bright spot on the surface of Betelgeuse in recent years, although at the moment, the star appears spherically symmetrical.

“But we do not know why the star is shrinking,” Wishnow said. “Considering all that we know about galaxies and the distant universe, there are still lots of things we don’t know about stars, including what happens as red giants near the ends of their lives.”

Betelgeuse was the first star ever to have its size measured, and even today is one of only a handful of stars that appears through the Hubble Space Telescope as a disk rather than a point of light. In 1921, Francis G. Pease and Albert Michelson used optical interferometry to estimate its diameter was equivalent to the orbit of Mars. Last year, new measurements of the distance to Betelgeuse raised it from 430 light-years to 640, which increased the star’s diameter from about 3.7 to about 5.5 AU.

“Since the 1921 measurement, its size has been re-measured by many different interferometer systems over a range of wavelengths where the diameter measured varies by about 30 percent,” Wishnow said. “At a given wavelength, however, the star has not varied in size much beyond the measurement uncertainties.”

The measurements cannot be compared anyway, because the star’s size depends on the wavelength of light used to measure it, Townes said. This is because the tenuous gas in the outer regions of the star emits light as well as absorbs it, which makes it difficult to determine the edge of the star.

The Infrared Spatial Interferometer, which Townes and his colleagues first built in the early 1990s, sidesteps these confounding emission and absorption lines by observing in the mid-infrared with a narrow bandwidth that can be tuned between spectral lines. The technique of stellar interferometry is highlighted in the June 2009 issue of Physics Today magazine.

Townes, who turns 94 in July, plans to continue monitoring Betelgeuse in hopes of finding a pattern in the changing diameter, and to improve the ISI’s capabilities by adding a spectrometer to the interferometer.

“Whenever you look at things with more precision, you are going to find some surprises,” he said, “and uncover very fundamental and important new things.”

Sources: AAS and UC Berkeley. The paper is available here.

Distant black hole poses for a close-up

1H0707-495

 

[/caption]

Astronomers have probed closer than ever to a supermassive black hole lying deep at the core of a distant active galaxy that was once thought to be shrouded in dust — which will greatly advance the look captured in this NASA file image from the mid-1990s. Using new data from ESA’s X-ray Multi-Mirror Mission (XMM)-Newton spaceborne observatory, researchers peered into the innermost depths of the object, which lies at the heart of the galaxy known as 1H0707-495.

“We can now start to map out the region immediately around the black hole,” says Andrew Fabian, at the University of Cambridge, who headed the observations and analysis.

Artist's conception of a black hole. Credit: ESA
Artist's conception of a black hole. Credit: ESA

The galaxy — known as 1H0707-495 — was observed during four 48-hr-long orbits of XMM-Newton around Earth, starting in January 2008. 

X-rays are produced as matter swirls into a supermassive black hole, illuminating and reflecting from the matter before eventually accreting into it. Iron atoms in the flow can be observed in the reflected light, affected by the speed of the orbiting iron atoms, the energy required for the X-rays to escape the black hole’s gravitational field, and the spin of the black hole. All these features indicate that the astronomers are tracking matter to within twice the radius of the black hole itself.  

XMM-Newton detected two bright features of iron emission in the reflected X-rays that had never been seen together in an active galaxy. These bright features are known as the iron L and K lines, and they can be so bright only if there is a high abundance of iron. Seeing both in this galaxy suggests that the core is much richer in iron than the rest of the galaxy. 

Statistical analysis of the data revealed a time lag of 30 seconds between changes in the X-ray light observed directly, and those seen in its reflection from the disc. This delay in the echo enabled the size of the reflecting region to be measured, which leads to an estimate of the mass of the black hole at about 3 to 5 million solar masses.

The observations of the iron lines also show that the black hole is spinning very rapidly and eating matter so quickly that it verges on the theoretical limit of its eating ability, swallowing the equivalent of two Earths per hour.

Source: ESA. The paper appears in Nature.

Weather Keeps Shuttle Crew in Space Another Day

STS-125 crew members aboard Atlantis (pictured above) will hang out at least a day longer in space, following foul weather that prevented a timely landing today at NASA’s Kennedy Space Center in Florida.

And the forecast isn’t looking any sunnier for at least a little while.

There’s a 70 percent likelihood that storms will stick around today, with that chance dropping slightly to 60 percent through Saturday. By early next week, the chance of thunderstorms will have dropped below 50 percent.

NASA Flight Director Norm Knight and the entry team will evaluate weather conditions at Kennedy before permitting Atlantis and its crew to land at 9:16 a.m. Saturday. A second Kennedy landing opportunity is at 10:54 a.m. The shuttle also has landing opportunities at Edwards Air Force Base in California at 10:46 a.m. and 12:24 p.m.

If Atlantis does not land Saturday, there are multiple landing opportunities Sunday at Kennedy, Edwards, or White Sands Space Harbor in New Mexico.

Meanwhile, here are some ways to keep current on the mission’s finale:

NASA News Twitter feeds

NASA TV downlink information, including schedules and links to streaming video,

STS-125 mission and accomplishments 

NASA’s Hubble site

Disappearing Accretion Disk Is Missing Link in Pulsar Birth

[/caption]

A now-you-see-it, now-you don’t accretion disk (white and blue in the artist’s rendering at left) has tipped astronomers to the birth of a superfast, “millisecond” pulsar that was happening right before their eyes — er, their radio telescopes.

The new finding confirms the long-suspected evolutionary connection between a neutron star and a millisecond pulsar: they are two life stages of the same object.

Anne Archibald, of McGill University in Montreal, Canada and her colleagues announced their discovery in the May 21 online issue of the journal Science.

Pulsars are superdense neutron stars, the remnants left after massive stars have exploded as supernovae. Their powerful magnetic fields generate lighthouse-like beams of light and radio waves that sweep around as the star rotates, and are detectable as pulses on Earth.

Some, dubbed millisecond pulsars, rotate hundreds of times a second. Astronomers believe the fast rotation is caused by a companion star dumping material onto the neutron star and spinning it up.

The material from the companion would form a flat, spinning disk around the neutron star, and during this period, the radio waves characteristic of a pulsar would not be seen coming from the system. As the amount of matter falling onto the neutron star decreased and stopped, the radio waves could emerge, and the object would be recognized as a pulsar.

This sequence of events is apparently what happened with a binary-star system some 4000 light-years from Earth, in the constellation of Sextans just south of Leo. The millisecond pulsar in this system, called J1023, was discovered by the National Science Foundation’s Robert C. Byrd Green Bank Telescope (GBT) in West Virginia in 2007 in a survey led by astronomers at West Virginia University and the National Radio Astronomy Observatory.

The astronomers then found that the object had been detected by National Science Foundation’s Very Large Array radio telescope in New Mexico, during a large sky survey in 1998, and had been observed in visible light by the Sloan Digital Sky Survey in 1999, revealing a Sun-like star.

When observed again in 2000, the object had changed dramatically, showing evidence for a rotating disk of material, called an accretion disk, surrounding the neutron star. By May of 2002, the evidence for this disk had disappeared.

“This strange behavior puzzled astronomers, and there were several different theories for what the object could be,” said Ingrid Stairs of the University of British Columbia.

The 2007 GBT observations showed that the object is a millisecond pulsar, spinning 592 times per second.

“No other millisecond pulsar has ever shown evidence for an accretion disk,” Archibald said. “We know that another type of binary-star system, called a low-mass X-ray binary (LMXB), also contains a fast-spinning neutron star and an accretion disk, but these don’t emit radio waves. We’ve thought that LMXBs probably are in the process of getting spun up, and will later emit radio waves as a pulsar. This object appears to be the ‘missing link’ connecting the two types of
systems.”

The scientists have studied J1023 in detail with the GBT, with the Westerbork radio telescope in the Netherlands, with the Arecibo radio telescope in Puerto Rico, and with the Parkes radio telescope in Australia. Their results indicate that the neutron star’s companion has less than half the Sun’s mass, and orbits the neutron star once every four hours and 45 minutes.

Image caption: Material from distended “normal” star. right, streams onto accretion disk (white and blue) surrounding neutron star, left. Credit: Bill Saxton, NRAO/AUI/NSF

Source: National Radio Astronomy Observatory. Animations are here and here. Warning: that last one may cause dizziness.

A Cold and Wet History on Early Mars?

Mars. Credit: NASA

 

[/caption]

Even if an early Mars never got above freezing, the brine on its surface could have stayed liquid and supported life, a new study says.

Lead author Alberto G. Fairen, of NASA Ames Research Center in Moffett Field, California, and his colleagues have analyzed the behavior of Martian chemical concentrations found at various mission landing sites, and revealed that warm temperatures wouldn’t have been necessary to support salt-loving life forms.

The authors point out that many features on the Martian surface are believed to have been formed by flowing water and related mineral activity on the surface. Water is a key ingredient for life, but models were having a hard time envisioning a Mars warm enough to support it.

Much evidence has indicated surface temperatures well below freezing.

According to the new study, life may have fared all right anyway.

“Solutes could depress the melting point of water in a frozen Martian environment, providing a plausible solution to the early Mars climate paradox,” the authors write.

Fairen and his colleagues modeled the freezing and evaporation processes of Martian fluids with a composition resulting from the weathering of basalts, as reflected in the chemical compositions at Mars landing sites of Viking 1, Mars Pathfinder, and the rovers Spirit and Opportunity.

“Our results show that a significant fraction of weathering fluids loaded with Si, Fe, S, Mg, Ca, Cl, Na, K and Al remain in the liquid state at temperatures well below 273 K,” or nearly 32 degrees Fahrenheit (zero C), they write.

“This stability against freezing of Martian fluids can explain saline liquid water activity on the surface of Mars at mean global temperatures well below 273 K.”

Photo credit: NASA

Source: Nature

A Benevolent Sort of Asteroid Bombardment?

Celestial impacts can bring life as well as wipe it out, say the authors of a new study out of the University of Colorado at Boulder.

A case in point: the bombardment of Earth nearly 4 billion years ago by asteroids as large as Kansas would not have had the firepower to extinguish potential early life on the planet and may even have given it a boost.

In a new paper in the journal Nature, Oleg Abramov and Stephen Mojzsis report on their study of impact evidence from lunar samples, meteorites and the pockmarked surfaces of the inner planets. The evidence paints a picture of a violent environment in the solar system during the Hadean Eon 4.5 to 3.8 billion years ago, particularly through a cataclysmic event known as the Late Heavy Bombardment about 3.9 billion years ago.

Although many believe the bombardment would have sterilized Earth, the new study shows it would have melted only a fraction of Earth’s crust, and that microbes could well have survived in subsurface habitats, insulated from the destruction.

“These new results push back the possible beginnings of life on Earth to well before the bombardment period 3.9 billion years ago,” Abramov said. “It opens up the possibility that life emerged as far back as 4.4 billion years ago, about the time the first oceans are thought to have formed.”

Because physical evidence of Earth’s early bombardment has been erased by weathering and plate tectonics over the eons, the researchers used data from Apollo moon rocks, impact records from the moon, Mars and Mercury, and previous theoretical studies to build three-dimensional computer models that replicate the bombardment. Abramov and Mojzsis plugged in asteroid size, frequency and distribution estimates into their simulations to chart the damage to the Earth during the Late Heavy Bombardment, which is thought to have lasted for 20 million to 200 million years.

The 3-D models allowed Abramov and Mojzsis to monitor temperatures beneath individual craters to assess heating and cooling of the crust following large impacts in order to evaluate habitability. The study indicated that less than 25 percent of Earth’s crust would have melted during such a bombardment.

The CU-Boulder researchers even cranked up the intensity of the asteroid barrage in their simulations by 10-fold — an event that could have vaporized Earth’s oceans. “Even under the most extreme conditions we imposed, Earth would not have been completely sterilized by the bombardment,” said Abramov.

Instead, hydrothermal vents may have provided sanctuaries for extreme, heat-loving microbes known as “hyperthermophilic bacteria” following bombardments, said Mojzsis. Even if life had not emerged by 3.9 billion years ago, such underground havens could still have provided a “crucible” for life’s origin on Earth, Mojzsis said.

Geologic evidence suggests that life on Earth was present at least 3.83 billion years ago, said Mojzsis. “So it is not unreasonable to suggest there was life on Earth before 3.9 billion years ago. We know from the geochemical record that our planet was eminently habitable by that time, and this new study sews up a major problem in origins of life studies by sweeping away the necessity for multiple origins of life on Earth.”

The results also support the potential for microbial life on other planets like Mars and perhaps even rocky, Earth-like planets in other solar systems that may have been resurfaced by impacts, said Abramov.

Source: Eurekalert

New, Deep Image of Virgo Cluster Reveals Galaxy Cut Short in its Youth

Astronomers have peered deep inside the Virgo cluster, and measured the size of one of its most famous members — Messier 87 — with surprising results.

The giant elliptical galaxy isn’t quite as giant as previously believed.

This deep image of the Virgo Cluster, obtained by Chris Mihos of Case Western Reserve University and his colleagues using the university’s Burrell Schmidt telescope, shows the diffuse light between the galaxies belonging to the cluster. North is up, east to the left. The dark spots indicate where bright foreground stars were removed from the image.

At a distance of approximately 50 million light-years, the Virgo Cluster is the nearest galaxy cluster. It is located in the constellation of Virgo (the Virgin) and is a relatively young and sparse cluster. The cluster contains many hundreds of galaxies, including giant and massive elliptical galaxies, as well as more homely spirals like our own Milky Way.

Using ESO’s Very Large Telescope, astronomers have succeeded in measuring the size of giant galaxy Messier 87 and were surprised to find that its outer parts have been stripped away by still unknown effects. The galaxy also appears to be on a collision course with another giant galaxy in this very dynamic cluster.

The new observations reveal that Messier 87’s halo of stars has been cut short, with a diameter of about a million light-years, significantly smaller than expected, despite being about three times the extent of  the halo surrounding our Milky Way. Beyond this zone only few intergalactic stars are seen.

This research is presented in a paper to appear in Astronomy and Astrophysics: “The Edge of the M87 Halo and the Kinematics of the Diffuse Light in the Virgo Cluster Core,” led by Michelle Doherty at the Max-Planck-Institute for Extraterrestrial Physics in Garching, Germany.

“This is an unexpected result,” said study co-author Ortwin Gerhard. “Numerical models predict that the halo around Messier 87 should be several times larger than our observations have revealed. Clearly, something must have cut the halo off early on.”

The team used FLAMES, the super-efficient spectrograph at ESO’s Very Large Telescope at the Paranal Observatory in Chile, to make ultra-precise measurements of a host of planetary nebulae in the outskirts of Messier 87 and in the intergalactic space within the Virgo Cluster of galaxies, to which Messier 87 belongs. FLAMES can simultaneously take spectra many sources, spread over an area of the sky about the size of the Moon.

The observed light from a planetary nebula in the Virgo Cluster is as faint as that from a 30-Watt light bulb at a distance of about 6 million kilometres (about 15 times the Earth–Moon distance). Furthermore, planetary nebulae are thinly spread through the cluster, so even FLAMES’s wide field of view could only capture a few tens of nebulae at a time.

“It is a little bit like looking for a needle in a haystack, but in the dark,” said team member Magda Arnaboldi. “The FLAMES spectrograph on the VLT was the best instrument for the job.”

The astronomers have proposed several explanations for the discovered “cut-off” of Messier 87’s, such as collapse of dark matter nearby in the galaxy cluster. It might also be that another galaxy in the cluster, Messier 84, came much closer to Messier 87 in the past and dramatically perturbed it about a billion years ago. “At this stage, we can’t confirm any of these scenarios,” said Arnaboldi. “We will need observations of many more planetary nebulae around Messier 87.”

One thing the astronomers are sure about, however, is that Messier 87 and its neighbor Messier 86 are falling towards each other. “We may be observing them in the phase just before the first close pass,” said Gerhard. “The Virgo Cluster is still a very dynamic place and many things will continue to shape its galaxies over the next billion years.”

Source: ESO. A PDF version of the paper is available here

New Mechanism Explains Origins of Cometary Ingredients

A combination of radiation pressure from the star and the disk creates a net force that enables dust grains to surf along the disk surface from inner to outer regions of the disk. Credit: D. Vinkovic

Rocky planets like Earth are all believed to have begun as dust circling newly born stars, and clues about the origin of such dust comes to us in today’s meteorites and comets, as well as observations of circumstellar disks around young stars.

But mystery has shrouded the details of the evolution of dust and how it eventually comes to form larger objects. Now, two papers in the journal Nature are proposing a new mechanism to explain it.

The new mechanism hinges on heat-shocked crystalline dust grains, which somehow migrated from where they were created — presumably close to the Sun — to the outer Solar System.  By implication, the same process should occur around other young stars. 

A trio of past hypotheses had been proposed to explain the migration, but none of them quite fit. They included, according to physicist Dejan Vinkovic of the University of Split in Croatia, turbulent mixing, ballistic launching of particles in a dense wind created by interaction of the accretion disk with the young star’s magnetic field (called the X-wind model), and mixing mediated by transient spiral arms in marginally gravitationally unstable disks. Vinkovic is lead author on one of the Nature papers.

“The turbulent mixing requires a source of efficient turbulent viscosity and the magnetorotational instability is invoked as the most promising candidate, but large stretches of the disk are considered not sufficiently ionized to keep this instability active,” he wrote. “The X-wind model relies on the theoretical notion of magnetic field configurations in the immediate vicinity of pre-main-sequence stars and high hopes are put on future observations to resolve this predicament.”

And finally, “The spiral arms model is in the domain of discussions on whether the underlying numerics, physical approximations and assumptions about the initial conditions are realistic enough to make results plausible.”

In the other paper, Peter Abraham of the Hungarian Academy of Sciences and his colleagues find the signature of crystalline dust after a young star flared, whereas archival data showed no sign of it before the flare.

The Vinkovic paper investigates the mixing of large crystalline dust particles in the protoplanetary nebula around the young Sun.

The force produced by the light shining on an object is a well known phenomenon called radiation pressure. We do not feel it in daily lives because we are too massive for this effect to be noticeable. For very small particles, on the other hand, this force can be larger even than the gravity that keeps particles in the orbit around the star. Investigations have been focused so far only to the radiation pressure due to the starlight. The results showed that individual grains would not travel far and would be pushed deeper into the disk. 

Vinkovic reports that infrared radiation arising from the dusty disk can loft grains bigger than one micrometer out of the inner disk, where they are pushed outwards by stellar radiation pressure while gliding above the disk. Grains re-enter the disk at radii where it is too cold to produce sufficient infrared radiation pressure support for a given grain size and solid density.

However, Vinkovic points out that it is not only the star, but also the disk that shines. When studying effects on protoplanetary dust grains larger than one micrometer, which is comparable to the particle size of cigarette smoke, Vinkovic has discovered that the intense infrared light from the hottest regions of the protoplanetary disk is capable of pushing such dust out of the disk. Infrared radiation is what we can feel as “heat” on our skin. Combination of radiation pressure from the star and the disk creates a net force that enables dust grains to surf along the disk surface from inner to outer regions of the disk. 

The temperatures in this hot region reach around 1500 degrees Kelvin (2200 degrees Fahrenheit), enough to vaporize solid dust particles or to alter their physical and chemical structure. The mechanism that Vinkovic describes in his paper would transfer such altered dust particles to colder disk regions away from the star. This can explain why comets contain a puzzling combination of ices and particles altered at high temperatures. Astronomers have been perplexed by this mixture, since comets form in cold disk regions out of frozen substances like water, carbon dioxide or methane. Rocky dust particles that end up mixed with ices are therefore expected to never experience high temperatures.   

In an editorial accompanying the studies, University of Missouri astrophysicist Aigen Li wrote that the origin of crystalline silicates in comets “has been a matter of debate since their first detection 20 years ago.”

While Li touts promise in the new theory, “It would be interesting to see whether other mechanisms such as turbulent mixing and the ‘X-wind’ model would effectively carry submicrometre grains, which are efficient mid-IR emitters, outwards and incorporate them into comets,” he wrote. “It is also possible that some — but not all — crystalline silicates are made in situ in cometary comae.”

Source: Vinkovic’s press release. Watch a short animation showing how the newly proposed mechanism of dust movement works.

Unusual Cargo Headed to Hubble: A Basketball?

[/caption]

Most people know Edwin Hubble as a famed astronomer, but he also starred as a forward on the University of Chicago Maroons’ Big Ten champion basketball teams of 1907–08 and 1908–09.

And as fellow Chicago alumnus John Grunsfeld has prepared for his fifth space shuttle flight since 1995, he’s been pondered how best to deflate a century-old ball that Hubble had tossed around in a 1909 victory against Indiana University.

The challenge: Find a way to compactly stow the old pigskin, which to everyone’s surprise lacks an air valve, aboard the space shuttle Atlantis for its upcoming launch.

The problem unfolded last summer in a series of e-mails between Grunsfeld and Michael Turner, a University of Chicago astronomy and astrophysics professor.

“It’s a cosmic mystery as to how the ball was filled, and now for me how to drain it,” Grunsfeld told Turner, who had borrowed the basketball from the university’s athletics program for its orbital flight. Grunsfeld plans to return the basketball personally to the University after the mission, when it will go on display.

“We couldn’t find a valve to deflate it, so we will leave it to the rocket scientists to figure out how to flatten it,” Turner told Grunsfeld. It presented another challenge of the kind that Grunsfeld relishes, but would never have anticipated as an astronaut.

Five weeks before scheduled launch, Grunsfeld punctured the basketball with a hypodermic needle. “Nothing happened, no air hissing out, or any air transfer at all as I compressed the ball,” he said. Grunsfeld assumed that he had punctured the pigskin, but not the underlying air bladder. And yet more punctures with different needles in different locations also failed to deflate the ball.

Finally, with the University’s permission, Grunsfeld resorted to cutting a small incision into the ball. “To my astonishment, I discovered that there is no bladder, and no pressurized air. The basketball was filled with an organic fiber packing,” he said.

Grunsfeld plans to reshape the ball while in orbit and gently pass it around to crewmates during a photo-op. The moment should provide a memorable, light-hearted counterpoint to his usual orbital workload of marathon spacewalks and Hubble Telescope repairs.

Source: Steve Koppes, University of Chicago