Earth’s Other Moons


In the fall of 2006, observers at the Catalina Sky Survey in Arizona found an object orbiting the Earth. At first, it looked like a spent rocket stage — it had a spectrum similar to the titanium white paint NASA uses on rocket stages that end up in heliocentric orbits. But closer inspection revealed that the object was a natural body. Called 2006 RH120, it was a tiny asteroid measuring just a few metres across but it still qualified as a natural satellite just like the Moon. By June 2007, it was gone. Less than a year after it arrived, it left Earth’s orbit in search of a new cosmic companion.

Now, astrophysicists at Cornell are suggesting that 2006 RH120 wasn’t an anomaly; a second temporary moon is actually the norm for our planet.

Temporary satellites are a result of the gravitational pull of Earth and the Moon. Both bodies pull on one another and also pull on anything else in nearby space. The most common objects that get pulled in by the Earth-Moon system’s gravity are near Earth objects (NEOs) — comets and asteroids are nudged by the outer planets and end up in orbits that bring them into Earth’s neighbourhood.

Near Earth object Eros, the type of object that could be a second satellite. Image credit: NASA

The team from Cornell, astrophysicists Mikael Granvik, Jeremie Vaubaillon, Robert Jedicke, has modeled the way our Earth-Moon system captures these NEOs to understand how often we have additional moons and how long they stick around.

They found that the Earth-Moon system captures NEOs quite frequently. “At any given time, there should be at least one natural Earth satellite of 1-meter diameter orbiting the Earth,” the team said. These NEOs orbit the Earth for about ten months, enough time to make about three orbits, before leaving.

Luckily, and very interestingly, this discovery has implication well beyond academic applications.

Knowing that these small satellites come and go but that one is always present around the Earth, astronomers can work on detecting them. With more complete information on these bodies, specifically their position around the Earth at a given time, NASA could send a crew out to investigate. A crew wouldn’t be able to land on something a few metres across, but they could certainly study it up close and gather samples.

Close up image of asteroid 243 Ida. Image credit: NASA/courtesy of

Proposals for a manned mission to an asteroid have been floating around NASA for years. Now, astronauts won’t have to go all the way out to an asteroid to learn about the Solar System’s early history. NASA can wait for an asteroid to come to us.

If the Cornell team is right and there is no shortage of second satellites around the Earth, the gains from such missions increases. The possible information about the solar system’s formation that we could obtain would be amazing, and amazingly cost-efficient.

Source: Earth Must Have Another Moon, Astronomers Say

Missions that Weren’t: NASA’s Manned Mission to Venus


In the mid-1960s, before any Apollo hardware had flown with a crew, NASA was looking ahead and planning its next major programs. It was a bit of a challenge. After all, how do you top landing a man on the Moon? Not wanting to start from scratch, NASA focused on possible missions that would use the hardware and software developed for the Apollo program. One mission that fit within these parameters was a manned flyby of our cosmic twin, Venus. 

As one of our neighbouring planets, a mission to Venus made sense; along with Mars, it’s the easiest planet to reach. Venus was also a mystery at the time. In 1962, the Mariner 2 spacecraft became the first interplanetary probe. It flew by Venus, gathered data on its temperature and atmospheric composition before flying off into a large heliocentric orbit. But there was more to learn, making it a destination worth visiting.

A scale comparison of terrestrial planets Mercury, Venus, Earth, and Mars. That Earth and Venus are of a similar size led many to draw comparisons between the planets before better scientific experiments revealed Venus is closer to the Earth inside out. Image Credit: NASA/courtesy of

But beyond being relatively practical with great potential for scientific return, a manned mission to Venus would prove that NASA’s spacecraft and astronauts were up for the challenges of long-duration interplanetary flight. In short, it would give NASA something exciting to do.

The mission proposal was published early in 1967. It enhanced the Apollo spacecraft with additional modules, then took the basic outline of an Apollo mission and aimed it towards Venus instead of the Moon.

The crew would launch on a Saturn V rocket in November of 1973, a year of minimal solar activity. They would reach orbit in the same Command and Service Modules (CSM) that took Apollo to the Moon. Like on Apollo, the CSM would provide the main navigation and control for the mission.

Going to the Moon, Apollo missions had the crew turn around in the CSM to pull the LM out of its launch casing. On the mission to Venus, the crew would do the same, only instead of an LM they would dock and extract the Environmental Service Module (ESM). This larger module would supply long-duration life support and environmental control and serve as the main experiment bay.

An artist's impression of the Mariner 2 probe. Image Credit: NASA/courtesy of

With these two pieces mated, the upper S-IVB stage of Saturn V would propel the spacecraft towards Venus. Once its fuel store was spent, the crew would repurpose the S-IVB into an additional habitable module. Using supplies stored in the ESM, they would turn the rocket stage into their primary living and recreational space. On its outside, an array of solar panels would power each piece of the spacecraft throughout the mission.

The crew would spend 123 days traveling to Venus. Ten hours of each day would be dedicated to science, mainly observations of the solar system and beyond with a telescope mounted in the ESM. UV, X-ray, and infrared measurements could create a more complete picture of our corner of the universe. The rest of each day would be spent sleeping, eating, exercising, and relaxing — a full two hours of every day would be dedicated to unstructured leisure, a first for astronauts.

Like Mariner 2 before them, the crew would flyby Venus rather than go into orbit. They would only have 45 minutes to do close optical observations and deploy probes that would send back data on the Venusian atmosphere in realtime.

After the flyby, the spacecraft would swing around Venus and start its 273 day trip back to Earth. Like on an Apollo lunar mission, the crew would transfer back into the Command Module before reentry taking anything that had to return to Earth with them. They would jettison the S-IVB, the ESM, and the Service Module, switch the CM to battery power, and plunge through the atmosphere. Around December 1, 1974, they would splashdown somewhere in the Pacific Ocean.

Though worked out in great detail, the proposal was a thought experiment rather than something NASA was seriously considering. Nevertheless, Apollo-era technology would have managed the mission.

Source: NASA Manned Venus Flyby Study

The surface of Venus as captured by Soviet Venera 13 lander in March of 1982. NASA/courtesy of

Boris Chertok, Rocket Pioneer, Dies at 99


Boris Chertok was an integral member of the team responsible for the Soviet Union’s early success in space; the rockets he helped design and build ushered in the space age and changed the world. Chertok died on December 14, 2011, just three months before his 100th birthday. 

In 1914, two-year-old Chertok and his family emigrated from his hometown of Lodz, Poland and arrived in Moscow. As a young adult, he worked as an electrician before joining Soviet engineer Viktor Bolkhovitinov’s aircraft design bureau.

Image Credit: Boris Chertok

In 1945, Chertok entered the realm of space and rocketry. A recent graduate of the Moscow Power Engineering Institute, he was part of a Soviet team sent into Germany to find remnants of the Nazi V-2 missile. The team found the material they wanted, established a makeshift temporary scientific research institute in the war torn country, and uncovered the secrets of the Nazi weapon.

Once he returned to the Soviet Union, Chertok joined the newly established NII-88, the Soviet Union’s rocket design institute, as head of the control systems department in 1946. There he met and worked closely with famed Soviet Chief Designer Sergei Korolev, the man who worked tirelessly to convince Soviet leaders that rockets were worth developing.

Chertok and Korolev became close allies; under Korolev, Chertok developed the control systems for ballistic missiles and eventually became deputy chief designer of the NII-88’s spin-off organization, the OKB-1 in 1956. This latter organization was behind a string of Soviet firsts in space.

Chertok recalled the early years of Soviet rocketry as filled with many stressful and sleepless nights as the team readied rockets for tests. Nevertheless, these were some of the happiest times of his life.

“Each of these first rockets was like a beloved woman for us,” Chertok once said. “We were in love with every rocket, we desperately wanted it to blast off successfully. We would give our hearts and souls to see it flying.”

Sputnik 2 launches on an R-7 rocket, November 3, 1957. Image Credit: NASA/courtesy of

But spaceflight wasn’t initially Chertok’s highest priority. He and his colleague’s main task, the one they were eager to complete, was to build and launch nuclear warheads. They weren’t too interested in launching satellites; they felt that their contribution to their country and their impact on the world would come through development of precision nuclear warheads.

Their most successful rocket was the R-7, the world’s first intercontinental ballistic missile. But before it launched any warheads on enemy nations, it launched Sputnik into orbit in 1957.

Chertok didn’t immediately appreciate the effect this feat would have on the world, he recalled years later. He said it took him and the team that built the rocket days to realize that they had changed the world. The R-7 would further cement the Soviet Union’s place as a forerunner in space in 1961. A rocket in the R-7 family launched Yuri Gagarin into orbit.

For the bulk of his career, Chertok lived in anonymity. This was not an uncommon situation for Soviet scientists, particularly those among them that were Jewish. It wasn’t until 1987 that Chertok was publicly acknowledged for his role in the early Soviet Space program. He was named in an article commemorating the 30th anniversary of Sputnik.

Bill Gerstenmaier, NASA associate administrator for Human Exploration and Operations, described Chertok as a friend of NASA who will be missed. “His spirit will live on in the hearts of the Russian and American human spaceflight team.” His multi-volume memoirs, Rockets and People, are considered to be some of the best-kept records of the early Soviet space age.

Source: Russian Rocket Designer Boris Yevseyevich Chertok Dies at Age 99

The Thirty-Ninth Anniversary of the Last Moonwalk


On December 13, 1972, Apollo 17 Commander Eugene A. Cernan and Lunar Module Pilot (LMP) Harrison H. “Jack” Schmitt made the final lunar EVA or moonwalk of the final Apollo mission. Theirs was the longest stay on the Moon at just over three days and included over twenty-two hours spent exploring the lunar surface during which they collected over 250 pounds of lunar samples.

To commemorate the thirty-ninth anniversary of this last EVA, NASA posted a picture of Schmitt on the lunar surface as its ‘Image of the Day.’ 

Apollo 17, the only lunar mission to launch at night. Image Credit: NASA/courtesy of

Apollo 17 launched on a Saturn V rocket on December 7, 1972. Four days later on December 11, Cernan and Schmitt moved into the Lunar Module Challenger and descended to a touchdown in the Taurus-Littrow valley. Command Module Pilot Ron Evans, meanwhile, stayed in orbit aboard the Command Module America.

The Taurus-Littrow valley was chosen as the best landing spot to take advantage of Apollo 17’s capabilities. It was a “J mission,” one designed for extended EVAs that would take the astronauts further from the LM than any previous missions using the Lunar Rover. It was also a geologically interesting area. Here, the astronauts would be able to reach and collect samples from the old lunar highlands as well as relatively young volcanic regions. For this latter goal, Apollo 17’s greatest tool was its LMP, Schmitt.

When NASA began looking for its first group of astronauts in 1959, candidates had to be affiliated with the military, trained engineers, and have logged at least 1,500 hours of flying time in jets. The same basic criteria were applied to the second and third group of astronauts selected in 1962 and 1963 respectively.

Cernan's Apollo 17 lunar suit is currently on display at the Smithsonian National Air and Space Museum, just one of the 137 million Apollo-era artifacts in the museum's collection. Image Credit: National Air and Space Museum

The fourth group brought a change. In June 1965, six trained scientists joined NASA’s astronaut corps. For this group, PhDs were a necessity and the previous flight hours requirement was dropped. Three of the men selected were physicists, two were physicians, and one, Schmitt, was a trained geologist.

Schmitt had explored the geological possibilities of a a lunar mission as a civilian. Before he joined NASA, he worked with the U.S. Geological Survey’s Astrogeology Center in Flagstaff, Arizona. There he devised training programs designed to teach astronauts enough about geology as well as photographic and telescopic mapping to make their journeys to the Moon as fruitful as possible. He was among the astrogeologists that instructed NASA’s astronauts during their geological field trips.

After joining the astronaut corps, Schmitt spent 53 weeks catching up to his colleagues in flight proficiency. He also spent hundreds of hours learning to fly both the Lunar Module and the Command Module. All the while, he remained an integral part of the astronauts’ lunar geology training, often assisting crews in finding and collecting the right kinds of rocks from a control station in Houston during a lunar mission.

Schmitt’s lunar companion, Gene Cernan, was an Apollo veteran. As the LMP on Apollo 10, he had flown within eight miles of the lunar surface but didn’t have enough fuel — or NASA’s blessing — to actually land. As commander of Apollo 17, he spent more time on the Moon than any other man. As commander, he entered the LM after Schmitt at the end of their final moonwalk. His bootprints remain the most recent human-made mark on the lunar surface.

Cernan and Schmitt abord the LM Challenger during their Apollo 17 mission. Image Credit: NASA/courtesy of

New Submillimetre Camera Sheds Light on the Dark Regions of the Universe


The stars and faint galaxies you see when you look up at the night sky are all emitting light within the visible light spectrum — the portion of the electromagnetic spectrum we can see with our unaided eyes or through optical telescopes. But our galaxy, and many others, contain huge amounts of cold dust that absorbs visible light. This accounts for the dark regions.

A new camera recently unveiled at the James Clerk Maxwell Telescope (JCMT) in Hawaii promises to figuratively shed light on this dark part of the universe. The SCUBA-2 submillimetre camera (SCUBA in this case is an acronym for Submillimetre Common-User Bolometer Array) can detect light at lower energy levels, allowing astronomers to gather data on these dark areas and ultimately learn more about our universe and its formation. 

Light is measurable; its intensity or brightness is measured by photons while colour is measured by the energy of the photons. Red photons have the least energy and violet photons have the most energy. This can also be thought of in terms of wavelengths. Light at longer wavelengths have less energy and light at shorter wavelengths have more energy. This continues beyond the visible light spectrum. As electromagnetic waves get shorter, we get ultraviolet light, x-rays, and gamma rays. As wavelengths get longer, we get infrared light, submillimetre light, and finally radio waves.

Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. Image credit: Thomas Jarrett, IPAC/Caltech.

On the longer end of the electromagnetic spectrum, infrared and radio telescopes have been around for decades helping astronomers understand more about the universe. But this is only part of the picture. The cold dust that absorbs the visible light to create the dark regions seen through optical telescopes is actually absorbing the light’s energy and reemitting it at longer wavelengths in the submillimetre region.

The first submillimetre camera, SCUBA, was designed and constructed at the Royal Observatory in Edinburgh in collaboration with the University of London. In 1997, it was up and running at the JCMT. Observations of submillimetre wavelengths are typically harder to gather — it takes a long time to image a small portion of the sky in this region. Nevertheless, submillimetre observations have already revealed a previously unknown population of distant, dusty galaxies as well as images of cold debris discs around nearby stars. This latter finding could be an indication of the presence of planetary systems.

A team of astronomers has recently developed the camera SCUBA-2 that can probe the submillimetre region with increased speed and much greater detail. But it’s a touchy instrument. Director of the JCMT Professor Gary Davis explains that for SCUBA-2 to detect extremely low energy radiation in the submillimetre region, “the instrument itself needs to be [extremely cold]. The detectors… have to be cooled to only 0.1 degree above absolute zero [–273.05°C], making the interior of SCUBA-2 colder than anything in the Universe that we know of!”

The infant Universe as imaged in the radio wavelength spectrum. Image Credit: NASA/WMAP Science Team.

The camera is a huge step in observational astronomy. Director of the United Kingdom Astronomy Teaching Centre Professor Ian Robson likened the technological leap between early sub-millimetre cameras and SCUBA-2 to the difference between wind-on film cameras and modern digital technology. “It is thanks to the ingenuity and abilities of our scientists and engineers that this immense leap in progress has been achieved,” he said.

Dr Antonio Chrysostomou, Associate Director of the JCMT, explains that SCUBA-2’s first task will be to carry out a series of surveys throughout the sky, mapping sites of star formation within our Galaxy, as well as planet formation around nearby stars. It will also survey our galactic neighbours and look into deep space to sample the youngest galaxies in the Universe. This latter task will be critical in helping astronomers understand how galaxies have evolved since the Big Bang.

The SCUBA-2 camera is housed on the 15 metre (about 50 foot) diameter JCMT situated close to the summit of Mauna Kea, Hawaii, at an altitude of 4092 metres (about 13,425 feet). It is typically used to study our Solar System, interstellar dust and gas, and distant galaxies.

Source: Revolutionary New Camera Reveals Dark Side of the Universe


The James Clerk Maxwell Telescope. Image credit:



Astronomers Find the Most Supermassive Black Holes Yet


For years, astronomer Karl Gebhardt and graduate student Jeremy Murphy at The University of Texas at Austin have been hunting for black holes — the dense concentration of matter at the centre of galaxies. Earlier this year, they made a record-breaking discovery. They found a black hole weighing 6.7 billion times the mass of our Sun in the centre of the galaxy M87.

But now they shattered their own record. Combining new data from multiple observations, they’ve found not one but two supermassive black holes that each weigh as much as 10 billion Suns.

“They just keep getting bigger,” Gebhardt said.

An artist's impression of the black hole at the centre of the M87 galaxy. Image credit: Gemini Observatory/AURA illustration by Lynette Cook

Black holes are made of extremely densely packed matter. They produce such a strong gravitational field that even light cannot escape. Because they can’t be seen directly, astronomers find black holes by plotting the orbits of stars around these giant invisible masses. The shape and size of these stars’ orbits can determine the mass of the black hole.

Exploding stars called supernovae often leave behind black holes, but these only weigh as much as the single star. Black holes billions of times the mass of our Sun have grown to be so big. Most likely, an ordinary black hole consumed another, captured huge numbers of stars and the massive amount of gas that they contain, or be the result of two galaxies colliding. The larger the collision, the more massive the black hole.

The supermassive black holes Gebhardt and Murphy have found are at the centres of two galaxies more than 300 million light years from Earth. One weighing 9.7 billion solar masses is located in the elliptical galaxy NGC 3842, the brightest galaxy in the Leo cluster of galaxies 320 million light years away in the direction of the constellation Leo. The other is as large or larger and sits in the elliptical galaxy NGC 4889, the brightest galaxy in the Coma cluster about 336 million light years from Earth in the direction of the constellation Coma Berenices.

Each of these black holes has an event horizon — the point of no return where nothing, not even light can escape their gravity — 200 times larger than the orbit of Earth (or five times the orbit of Pluto). That’s a mind-boggling 29,929,600,000 kilometres or 18,597,391,235 miles. Beyond the event horizon, each has a gravitational influence that extends over 4,000 light years in every direction.

The illustration shows the relationship between the mass of a galaxy's central black hole and the mass of its central bulge. Recent discoveries of supermassive black holes may mean that the black holes in all nearby massive galaxies are more massive than we think. This could signal a change in our understanding of the relationship between a black hole and its surrounding galaxy. Image credit: Tim Jones/UT-Austin after K. Cordes & S. Brown (STScI)

For comparison, the black hole at the centre of our Milky Way Galaxy has an event horizon only one-fifth the orbit of Mercury — about 11,600,000 kilometres or 7,207,905 miles. These supermassive black holes are 2,500 times more massive than our own.

Gebhardt and Murphy found the supermassive black holes by combining data from multiple sources. Observations from the Gemini and Keck telescopes revealed the smallest, innermost parts of these galaxies while data from the George and Cynthia Mitchell Spectrograph on the 2.7-meter Harlan J. Smith Telescope revealed their largest, outmost regions.

Putting everything together to deduce the black holes’ mass was a challenge. “We needed computer simulations that can accommodate such huge changes in scale,” Gebhardt said. “This can only be done on a supercomputer.”

But the payoff doesn’t end with finding these massive galactic centre. The discovery has much more important implications. It “tells us something fundamental about how galaxies form” Gebhardt said.

These black holes could be the dark remnants of previously bright galaxies called quasars. The early universe was full of quasars, some thought to have been powered by black holes 10 billion Solar masses or more. Astronomers have been wondering where these supermassive galactic centres have since disappeared to.

Gebhardt and Murphy might have found a key piece in solving the mystery. Their two supermassive black holes might shed light on how black holes and their galaxies have interacted since the early universe. They may be a missing link between ancient quasars and modern supermassive black holes.

Source: McDonald Observatory Press Release.

Where Have All the Quasars Gone?

Are Gas-Formed Gullies the Norm on Mars?


In June 2000, Martian imaging scientists made a striking discovery — data from NASA’s Mars Global Surveyor spacecraft found gullies on the red planet. Gullies on Earth form when water runs down steep slopes and carves soil out of its way, so the discovery of this geologic feature on Mars was enticing evidence that liquid water existed on or near the surface of Mars.

But gullies have also been spotted in the Mars’ polar regions where the temperature is too cold for water to exist in its liquid form. Adding to the puzzle is the suggestion that the apparent gullies are actually formed by wind or underground gases causing sand and dust to roll down a steep hill and create what looks like a gully formed by Water. So what’s behind the gullies at Mars’ poles?

A gully that looks like it was made by water eroding hard rock. Image credit: NASA/JPL/Malin Space Science Systems

Frozen carbon dioxide — more commonly known as dry ice — isn’t an uncommon feature on Mars. It can freeze out of the carbon dioxide rich atmosphere on Mars and, after a dust storm, be covered by a thin layer of dust or sand. Recently, researchers are looking to this subsurface dry ice as a possible explanation for Martian gullies, particularly at the frozen poles.

The key here is sublimation — the phenomenon of a solid passing directly into its gaseous state. You’ve seen this happen if you’ve ever poured water on dry ice. The water warms the solid dry ice and turn it into a gas. On Mars, it’s possible that changes in temperatures with seasons could be enough to sublimate the frozen carbon dioxide. The expulsion of the gas through the soil on the surface could cause it to roll down a hill like a fluid. The same thing would happen with water coming up from under ground.

Whether or not dry ice sublimation is behind polar gullies became a focus of Yolanda Cedillo-Flores and three colleagues at the Lunar and Planetary Institute in Houston, Texas.

A previous study testing whether sublimating dry ice could form gullies, led by Cedillo-Flores, was brilliant in its simplicity. They piled sand into Mars-like slopes then blew air underneath the sand. The sand flowed down the slope, much like a liquid would, and formed was looked very much like a gully.

Recently, the team at the Lunar and Planetary Institute have been testing the possibility of this phenomenon happening on Mars. They used the average daytime and seasonal temperatures of the Martian year to calculate the sublimation rate of dry ice on Mars. Then, they ran models of this event on Martian areas without any sediment as well as those with layers of sand and dust of varying thickness over the average seasonal deposit of dry ice. When simulated spring came, enough heat reached the dry ice that it sublimated and acted like a fluid. Turns out, Mars is just right for seasonal sublimation of frozen carbon dioxide.

They finally came to the conclusion that carbon dioxide sublimation is the likeliest cause behind the gullies forming in Mars’ polar regions.

Sources: Martian gullies: Produced by fluidization of dry materialCO2 gas fluidization in the initiation and formation of Martian polar gullies.

Between 1999 and 2005, a new gully popped up. Image credit: NASA/JPL/Malin Space Science Systems

Good and Bad News Comes With NASA’s 2012 Budget


On November 14, President Obama signed an Appropriations bill that solidified NASA’s budget for fiscal year 2012. The space agency will get $17.8 billion. That’s $648 million less than last year’s funding and $924 million below what the President had asked for. But it’s still better than the $16.8 billion proposed earlier this year by the House of Representatives.

To most people, $17.8 billion is a huge amount of money. And it absolutely is, but not when you’re  NASA and have multiple programs and missions to fund. So where does it all go?

The bill highlights three major items when it comes to NASA’s budget. Of its total funding, $3.8 billion is set aside for Space Exploration. This includes research and development of the the Orion Multi-Purpose Crew Vehicle and Space Launch System, hopefully keeping both programs on schedule.

The Orion Multi-Purpose Crew Vehicle. Credit: NASA.

$4.2 billion has been allocated for Space Operations. This includes funds to tie up the loose ends of the Space Shuttle program, the end of which is expected to save more than $1 billion. The Space Operations budget, however, is $1.3 billion below last year’s level.

Coming to a very popular topic, the bill dedicates $5.1 billion to NASA Science Programs, a division that includes the James Webb Space Telescope. The JWST has garnered much attention this year, usually for being badly behind schedule and cripplingly over budget. Of the funding dedicated to Science Programs, $530 million is directed to the JWST project.

There’s a little problem hidden in this item in the bill. The $5.1 billion is just over the $150 million funding the Science Programs got last year. With $380 million on top of that increased promised to the JWST, where’s the money coming from? Other programs. As the bill says, “the agreement accommodates cost growth in the James Webb Space Telescope (JWST) by making commensurate reductions in other programs.” NASA will get the money for the telescope the only place it can – by cutting other programs.

This means potential major cuts to planetary programs since NASA’s manned program traditionally gets the most money. And understandably so. Aside from the real space enthusiasts who track robotic missions with gusto, an astronaut provides a great human link to space for the everyman. So even without an active manned program, it’s highly unlikely NASA will find the funds for the JWST program in its manned budget.

Planetary missions will likely take the hit. And a funding cut now could seriously affect NASA’s long range plans, such as its planned missions to Mars through 2020. Prospective missions to Europa will face difficulties too, a real shame since liquid water was recently discovered under the icy surface of that Jovian moon.

Unfortunately, NASA’s budget just can’t match its goals. For the near future, NASA will have to do what it can with what it’s got. As NASA Administrator Charles Bolden said in reference to the budget the House of Representatives originally proposed in February, it “requires us to live within our means so we can invest in our future.” Let’s all hope for some wise investing on NASA’s part.

Sources: “Summary: Fiscal Year 2012 Appropriations “Mini-Bus”, “2012 Budget is Set” from the Planetary Society.

The Human Cost of Russia’s Lost Spacecraft


It hasn’t been a great year for Roscosmos, the Russian Federal Space Agency. In the last twelve months, it has lost four major missions on top of the aerospace industry’s failure to produce its planned number of spacecraft.

For the most part, lost missions conjure up feelings of despair for the spacecraft from a scientific or exploration perspective – what does the silent satellite or failed launch mean for the agency’s immediate and overall goals? But there’s another side to lost missions that are less common. What does a lost mission or failed launch mean for the people responsible? All four missions Roscosmos has lost in the last year have been substantial. In December 2010, a Proton-M booster failed to put three Glonass-M satellites in orbit. These were meant to enhance Russia’s Global Navigation Satellite System, the Russian counterpart to America’s GPS system, and just recently, Russia successfully launched replacements.

In February, a Rokot booster carrying the Geo-IK-2 satellite ended in failure. The satellite was designed to build on Russia’s geodesic research. Acting as a precise reference point, it would help scientists take accurate measurements of the Earth’s shape and the properties of its gravitational field and support such fields as cartography, missile guidance, study of tectonic plate movements, ocean tides, and ice conditions.

A schematic showing the loss of theProgress M-12 expendable spacecraft. Credit: RIA Novosti.

The loss of these missions was doubtless devastating for the teams who designed them, but the After the loss of Geo-IK-2, a number of senior space industry officials were fired and Roscosmos’s chief, Anatoly Perminov, was forced to resign.

In August, another Proton-M rocket failed to launch an Ekspress-AM4. The communications satellite was designed to provide digital television and secure government communications throughout the Russian Federation extending far into Siberia and the Far East.

This failure prompted further disciplinary action. A Russian State Commission of inquiry was established to determine the reasons for the failure. The International Launch Services (ILS), a joint US-Russian venture with exclusive rights to launch commercial payload from the Baikonur Cosmodrome in Kazakhstan, formed its own Failure Review Oversight Board to review Roscosmos‘ final internal report. The final verdict was both missions were lost due to negligence.

Things didn’t get better for the Russian Space Agency. Only a week after the loss of Eskpress-AM4, A Soyuz-U booster failed. Its cargo, the Progress M-12 expendable cargo spacecraft, never reached the crew waiting for its contents aboard the International Space Station.

Now, it looks like further harsh disciplinary action might befall the scientists and engineers behind the failed Phobos-Grunt. Designed to land on Mars’ larger moon and return a soil sample, the spacecraft got stuck in Earth orbit in November. Russian President Dmitry Medvedev has suggested that those responsible for the failure need to be punished. They could he fined, he said. He even went so far as to suggest criminal prosecution. The threat might be directed at Lavochkin, the company that built Phobos-Grunt.

Russian President Dmitry Medvedev. Credit: RIA Novosti

It’s possible Medvedev is protecting the Russian people who, like Americans, foot the bill of their nation’s space program. But he might not be. The failures do, after all, deal a serious blow to Russia’s technological pride and standing as a power in space.

“I am not suggesting putting them up against the wall like under Josef Vissarionovich (Stalin), but seriously punish either financially or, if the fault is obvious, it could be a disciplinary or even criminal punishment,” Medvedev said.

Surprisingly, or perhaps not, Roscosmos isn’t the only Russian industry to be target by Medvedev’s calls for disciplinary action. Similar calls have been made for disciplinary action after carelessness, corruption, and problems within Russia’s infrastructure, such as a riverboat sinking in July that killed 122. The difference is that no one dies when an unmanned spacecraft fails to complete its mission.

Source: Russian President Warns Space Officials Over Failures. RIA Novosti.

Could Electrical Sprites Hold the Key to Extraterrestrial Life?



In 1989, meteorologists discovered sprites. Not the spirits, elves, or pixies that pepper Shakespearean comedies but their equally elusive electrical namesakes. Lightning sprites are large scale electrical discharges inside the clouds above storms that make the upper atmosphere glow, sort of like a fluorescent lightbulb.

Meteorologists have already determined that sprites likely aren’t unique to Earth. In fact, this elusive form of lightning might be common throughout the solar system. Now, researchers at Tel Aviv University are asking whether the presence of sprites on other planets could indicate the presence of organic material in their atmospheres.  

The layers of our atmosphere. Image credit: National Weather Service, JetStream Online School for Weather.

Though not an uncommon phenomena, sprites are incredibly hard to find and observe. They can only be captured with highly sensitive high speed cameras. Sprites occur in the Earth’s Mesosphere, layer between the stratosphere and the thermosphere – about 50 km (31 miles) to 90 km (56 miles) high. At this altitude, the gases that make up our atmosphere are much thinner and unable to hold heat from the Sun making the average temperature a chilly 5°F (-15°C) to as low as -184°F (-120°C).

But gases at this altitude are still thick enough to slow meteors – this is where they burn up and create what we see as meteor showers. Gases in the mesosphere are also thick enough to light up with sprites, providing a window into the composition of our atmosphere. Sprites, which glow reddish-orange, indicate the kinds of molecules present in this layer of the atmosphere.

Lightning isn’t a rare occurrence in our solar system, which leads researchers to suspect sprites might be found on Jupiter, Saturn, and Venus – all planets with the right environment for strong electrical storms. Just like on Earth, sprites found on these planets could open a window in their atmospheric composition, conductivity, and possibly point to the presence of exotic compounds.

Jupiter and Saturn present the most exciting environments. Both gas giants experience lightening storms with flashes more than 1,000 as powerful as those found on Earth. It’s on these planets that Ph.D. student Daria Dubrovin, with her supervisors Prof. Colin Price of Tel Aviv University’s Department of Geophysics and Planetary Sciences and Prof. Yoav Yair at the Open University of Israel, is focussing on.

Dubrovin has re-created these planetary atmospheres in a lab to study the presence of sprites in space. Or, as she describes her work, “We make sprites in a bottle.” She hopes this will provide a new understanding of electrical and chemical processes on other planets.

A sprite as it might appear in Saturn's atmosphere, created in a TAU lab. Image credit: American Friends, Tel Aviv University

What’s more, understanding lightning on other worlds could help researchers understand the possibility of life on other worlds. As Dubrovin points out, lightning is commonly accepted as the generator of organic molecules that turned early Earth’s ocean into the life-filled primordial soup. Increased study of lightning on other planets could give another clue into the presence of extraterrestrial life. Their research could easily be applied to exoplanets, not just bodies in our solar system.

A lightning storm on Saturn has Dubrovin pretty excited. It’s currently producing over 100 electrical flashes per second, a rare occurrence even within the planet’s volatile cloud layers. If researchers could successfully gather images of higher altitude sprites from the Cassini spacecraft (currently in orbit around Saturn), it would not only yield information on the storm below but also add to the general knowledge base of sprites and lightning on other planets.

Video of Sprites from the University of Alaska

Source: Tel Aviv University