Categories: AstrobiologyMars

Mars Sample Return Mission? Naaah… Just Beam Back Martian DNA

Artist concept of a Mars Sample Return mission. Credit: Wickman Spacecraft & Propulsion.

A Mars sample return mission has long been a dream and goal of many planetary scientists. Getting Martian soil samples back here on Earth would allow them to be studied in ways rovers and landers just can’t do. Of course, the big reason for getting samples of Mars back to Earth would be to really determine if there ever was – or is — life on Mars. But a sample return mission would be “hellishly difficult,” Steve Squyres of the MER mission once said.

But forget sending a lander, scooping up samples, putting them in a capsule and somehow rocketing them back to Earth. Human genome sequencer Craig Venter wants to send a DNA sequencing machine Mars, and beam back the DNA data to Earth. Not to be outdone, Jonathan Rothberg, founder the DNA sequencing company Ion Torrent, is working on getting his Personal Genome Machine to Mars and sending back the data.

In articles in the Los Angeles Times and MIT’s Technology Review this week the two biologists seem to be in a race, of sorts, to see who could send their DNA machines to Mars first. Venter was quoted as saying, “There will be life forms there,” Venter said, and wants to build a “biological teleporter.”

Rothberg is looking to be part of a NASA-funded project at Harvard and MIT called SET-G, or “the search for extraterrestrial genomes.”

An MIT researcher involved in the project, Christopher Carr, told Technology Review that his lab is working to shrink Ion Torrent’s machine from 30 kilograms down to just three kilograms so that it can fit on a NASA rover, and they are testing how well the device can withstand the heavy radiation it would encounter on the way to Mars.

With NASA’s current budget woes, a sample return mission likely couldn’t happen until around 2030. But another Mars rover mission may be slated for 2018, if all goes well, and a DNA sequencer could potentially be part of the mission, the two biologists said. And an in-situ DNA sequencer avoids the potential pitfalls of a sample return mission.

“People are worried about the Andromeda strain,” Venter said. “We can rebuild the Martians in a P-4 spacesuit lab instead of having them land in the ocean.”

Sources: Los Angeles Times, Technology Review

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

2 days ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

2 days ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

3 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

3 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

3 days ago