Categories: Cosmology

Life and Death in a Tangled Web of Space

In a star-making nebula awash in a tangled nest of gas and glowing filaments, scientists have uncovered an interesting, previously unseen interplay between gravity and turbulence that affects the formation of stars.

This image, taken by the European Space Agency’s Herschel Space Observatory, shows the highly detailed structure of cool wispy filaments of the Vela C molecular cloud. Located just 2,300 light-years from Earth, Vela-C is a vast star-making complex of gas and dust. And within this glowing cloud, both high-mass stars and smaller Sun-like stars form through very different processes.

Gravitational attraction pulls gas and dust together to form massive clumps of matter in glowing ridges. According to scientists studying the image, the most massive and brightest stars will form within these clumps. Random motion and turbulence throughout the cloud appear to create the fine nest-like filaments. It’s within these areas that smaller stars will form. Tiny, white specks fleck the image. These white dots, more abundant in the ridge-like filaments, are pre-stellar cores; compact clumps of gas and dust that might ignite into new stars.

Vela-C’s proximity to Earth makes it an ideal laboratory to study the birth of different kinds of stars. The nebula may also make it a perfect study of supernovae. The blue areas in the image contain expanding pockets of hot gas energized by the strong solar wind and ultraviolet radiation of young and massive stars. Compared to our Sun’s expected 10 billion year life-span, these massive stars burn through their supply of nuclear fuel within just a few million years. At the end of their lives, these stars will explode in dazzling supernovae.

The Herschel Telescope, launched in 2009, explores the Universe in the far infrared. While interstellar dust is cold, it shines brightly against the even colder surrounding space. The longest wavelengths of light show up as the red filaments in this image. Shorter, signifying hotter, wavelengths of light show up as yellow, green and blue.

Image Caption: The Vela-C molecular cloud region observed in far-infrared wavelengths. Credit: ESA/PACS/SPIRE/Tracey Hill & Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, France

John Williams

John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA's Great Observatories and other sources in a different way. A long-time science writer and space enthusiast, he created award-winning Hubble Star Cards. Use coupon code UNIVERSE to Hold the Universe in your hands. Follow John on Twitter @terrazoom.

Recent Posts

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

23 mins ago

NASA’s New Solar Sail Has Launched and Deployed

Solar Sails are an enigmatic and majestic way to travel across the gulf of space.…

2 hours ago

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been…

8 hours ago

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

24 hours ago

There are Four Ways to Build with Regolith on the Moon

Over the last few years I have been renovating my home. Building on Earth seems…

1 day ago

Purple Bacteria — Not Green Plants — Might Be the Strongest Indication of Life

Astrobiologists continue to work towards determining which biosignatures might be best to look for when…

2 days ago