Categories: Cosmology

Life and Death in a Tangled Web of Space

In a star-making nebula awash in a tangled nest of gas and glowing filaments, scientists have uncovered an interesting, previously unseen interplay between gravity and turbulence that affects the formation of stars.

This image, taken by the European Space Agency’s Herschel Space Observatory, shows the highly detailed structure of cool wispy filaments of the Vela C molecular cloud. Located just 2,300 light-years from Earth, Vela-C is a vast star-making complex of gas and dust. And within this glowing cloud, both high-mass stars and smaller Sun-like stars form through very different processes.

Gravitational attraction pulls gas and dust together to form massive clumps of matter in glowing ridges. According to scientists studying the image, the most massive and brightest stars will form within these clumps. Random motion and turbulence throughout the cloud appear to create the fine nest-like filaments. It’s within these areas that smaller stars will form. Tiny, white specks fleck the image. These white dots, more abundant in the ridge-like filaments, are pre-stellar cores; compact clumps of gas and dust that might ignite into new stars.

Vela-C’s proximity to Earth makes it an ideal laboratory to study the birth of different kinds of stars. The nebula may also make it a perfect study of supernovae. The blue areas in the image contain expanding pockets of hot gas energized by the strong solar wind and ultraviolet radiation of young and massive stars. Compared to our Sun’s expected 10 billion year life-span, these massive stars burn through their supply of nuclear fuel within just a few million years. At the end of their lives, these stars will explode in dazzling supernovae.

The Herschel Telescope, launched in 2009, explores the Universe in the far infrared. While interstellar dust is cold, it shines brightly against the even colder surrounding space. The longest wavelengths of light show up as the red filaments in this image. Shorter, signifying hotter, wavelengths of light show up as yellow, green and blue.

Image Caption: The Vela-C molecular cloud region observed in far-infrared wavelengths. Credit: ESA/PACS/SPIRE/Tracey Hill & Frédérique Motte, Laboratoire AIM Paris-Saclay, CEA/Irfu – CNRS/INSU – Univ. Paris Diderot, France

John Williams

John Williams is owner of TerraZoom, a Colorado-based web development shop specializing in web mapping and online image zooms. He also writes the award-winning blog, StarryCritters, an interactive site devoted to looking at images from NASA's Great Observatories and other sources in a different way. A long-time science writer and space enthusiast, he created award-winning Hubble Star Cards. Use coupon code UNIVERSE to Hold the Universe in your hands. Follow John on Twitter @terrazoom.

Recent Posts

BepiColombo’s New Images of Mercury are Cool

The ESA/JAXA BepiColombo spacecraft made another flyby of its eventual target, Mercury. This is one…

16 hours ago

The True Size of Galaxies is Much Larger Than We Thought

Ask most people what a galaxy is made up of, and they'll say it's made…

20 hours ago

Using A Space Elevator To Get Resources Off the Queen of the Asteroid Belt

Here at UT, we've had several stories that describe the concept of a space elevator.…

22 hours ago

Iron Winds are Blowing on WASP-76 b

Exoplanets have been discovered with a wide range of environmental conditions. WASP-76b is one of…

1 day ago

ALMA Detects Hallmark “Wiggle” of Gravitational Instability in Planet-Forming Disk

According to Nebula Theory, stars and their systems of planets form when a massive cloud…

2 days ago

Largest Dark Matter Detector is Narrowing Down Dark Matter Candidate

In 2012, two previous dark matter detection experiments—the Large Underground Xenon (LUX) and ZonEd Proportional…

2 days ago