Categories: Earth

Is Earth Running Out Of Crust?

[/caption]

Earth just doesn’t make crust like it used to… at least, not according to new research by a team of scientists in the UK.

Researchers with the Universities of Bristol, St Andrews and Portsmouth have studied elements trapped within zircon samples gathered from all over the planet to peer billions of years back in time at how Earth’s crust was being produced.

Zircon, a mineral found in granite, can be dated with precision and is thus an accurate measure for geologic timescales.

What they found was that 65% of our planet’s current crust had already existed 3 billion years ago. Since rocks older than 2.5 billion years are rare on Earth today, this means that some process began to take place that either reworked — or destroyed — a large portion of the older crust, and changed how new crust was formed.

During the first 1.5 billion years of Earth’s history, the team reports, the rate of crust formation was high — approximately 3 cubic kilometers was added to the continents each year. After that the rate dropped substantially, falling to about 0.8 cubic kilometers per year for the next 3 billion years — right up to the present day.

The cause is yet unknown, but it may be the result of the onset of plate tectonics driven by subduction — the process by which sections of Earth’s crust (“plates”) slide beneath other sections, sinking into the underlying mantle to be liquefied into magma by pressure and heat. New crust is created when the magma rises again where the plates separate… Earth’s current “conveyor belt” of crust formation.

Whatever process was in place prior to 3 billion years ago, it was much more efficient at creating crust.

“Such a sharp decrease in the crustal growth rate about 3 billion years ago indicates a dramatic change in the way the continental crust was generated and preserved,” said Dr. Bruno Dhuime of the University of Bristol’s School of Earth Sciences. “This change may in turn be linked to the onset of subduction-driven plate tectonics and discrete subduction zones as observed at the present day.  The next challenge is to determine which tectonic regime shaped the Earth’s crust in the planet’s first 1.5 billion years before this change.”

The team’s paper “A Change in the Geodynamics of Continental Growth 3 Billion Years Ago” (Bruno Dhuime, Chris J. Hawkesworth,  Peter A. Cawood, Craig D. Storey) was published March 16 in Science.

Read more on the University of Bristol’s press release here.

Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

28 mins ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

20 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

20 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

21 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

21 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

21 hours ago