Categories: Extrasolar Planets

When Stars Play Planetary Pinball

[/caption]

Many of us remember playing pinball at the local arcade while growing up; it turns out that some stars like it as well. Binary stars can play tug-of-war with an unfortunate planet, flinging it into a wide orbit that allows it to be captured by first one star and then the other, in effect “bouncing” it between them before it is eventually flung out into deep space.

The new paper, by Nick Moeckel and Dimitri Veras of the University of Cambridge, will be published in a future issue of Monthly Notices of the Royal Astronomical Society.

The gravitational pull of large gas giant planets can affect the orbits of smaller planets; that scenario is thought to have occurred in our own solar system. In some cases, the smaller planet may be flung into a much wider orbit, perhaps even 100 times wider than Pluto’s. In the case of single stars, that’s normally how it ends. In a binary star system, however, the two stars may play a game of “cosmic pinball” with the poor planet first.

Moeckel and Dimitri conducted simulations of binary star systems, with two sun-like stars orbiting each other at distances between 250 and 1,000 times the distance of the Earth from the Sun. Each star had its own set of planets. The planetary systems would often become unstable, resulting in one of the planets being flung out, where it could be subsequently captured by the other star’s gravity. Since the new orbit around the second star would also tend to be quite wide, the planet would be vulnerable to recapture again by the first star. This could continue for a long time, and the simulations indicated that more than half of all planets initially ejected would get caught in this game of “cosmic pinball.”

In the end, some planets would settle back into an orbit around one of the stars, but the majority would escape both stars altogether, finally being flung out into deep space forever.

According to Moeckel, “Once a planet starts transitioning back and forth, it’s almost certainly at the beginning of a trip that will end in deep space.”

We are fortunate to live in a solar system where our planet is in a nice, stable orbit. For others out there who may not be so lucky, it would be like living through a disaster movie played out over eons.

The paper is available here.

Paul Scott Anderson

Paul Scott Anderson is a freelance space writer with a life-long passion for space exploration and astronomy and has been a long-time member of The Planetary Society. He currently writes for Universe Today and Examiner.com. His own blog The Meridiani Journal is a chronicle of planetary exploration.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

15 hours ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

15 hours ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

1 day ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago