Don’t like spiders? Well, here’s one that will grow on you! Located about 160,000 light years in the web of the Large Magellanic Cloud, star-forming region 30 Doradus is best known as the “Tarantula Nebula”. But don’t let it “bug” you… this space-born arachnid is home to giant stars whose intense radiation causes stellar winds to blast through surrounding gases to give us an incredible view!

When seen through the eyes of the Chandra X-ray Observatory, these huge shockwaves of x-ray energy heat the encompassing gaseous environment up to multi-millions of degrees and show up as blue. The supernovae detonations blast their way outward… gouging out “bubbles” in the cooler gas and dust. They show up hued as orange when observed through infra-red emissions and recorded by the Spitzer Space Telescope.

What’s so special about the Tarantula? Because it is so close, it’s a prime candidate for studying an active HII region. This stellar nursery is the largest in our Local Group and a perfect laboratory for monitoring stellar evolution. Right now astronomers are intensely interested in what causes growth on such a large scale – and their curent findings show it doesn’t have anything to do with pressure and radiation from the massive stars. However, an earlier study had opposing conclusions when it came to 30 Doradus’ central regions. By employing the Chandra Observatory observations, we may just find different opinions!

“Observations show that star formation is an inefficient and slow process. This result can be attributed to the injection of energy and momentum by stars that prevents free-fall collapse of molecular clouds. The mechanism of this stellar feedback is debated theoretically; possible sources of pressure include the classical warm H II gas, the hot gas generated by shock heating from stellar winds and supernovae, direct radiation of stars, and the dust-processed radiation field trapped inside the H II shell.” says Laura Lopez (et al). “By contrast, the dust-processed radiation pressure and hot gas pressure are generally weak and not dynamically important, although the hot gas pressure may have played a more significant role at early times.”

Original Story Source: Chandra News Release. For Further Reading: What Drives the Expansion of Giant H II Regions?: A Study of Stellar Feedback in 30 Doradus.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

8 hours ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

19 hours ago

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

23 hours ago

China is Going Back to the Moon Again With Chang'e-6

On Friday, May 3rd, the sixth mission in the Chinese Lunar Exploration Program (Chang'e-6) launched…

1 day ago

What Can Early Earth Teach Us About the Search for Life?

Earth is the only life-supporting planet we know of, so it's tempting to use it…

1 day ago

China Creates a High-Resolution Atlas of the Moon

Multiple space agencies are looking to send crewed missions to the Moon's southern polar region…

2 days ago