Exoplanet Aurora… Light ‘Em Up!

[/caption]

One of the most beautiful and mysterious apparitions – be it north or south – here on Earth is an auroral display. We know it’s caused by the Sun-Earth connection, so could it happen around exoplanets as well? New research shows that aurorae on distant “hot Jupiters” could be 100-1000 times brighter than Earthly aurorae, creating a show that would be… otherworldly!

“I’d love to get a reservation on a tour to see these aurorae!” said lead author Ofer Cohen, a SHINE-NSF postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics (CfA).

As we are now aware, aurorae occur here on Earth when the Sun’s energetic particles encounter our magnetosphere and are shifted towards the poles. This in turn excites the atmosphere, ionizing the particles. Much like turning on your electric stove, this causes the “element” to glow in visible light. It happens here… and it happens on Jupiter and Saturn as well. If other suns behave like our own and other planets have similar properties to those in our solar system, then the answer is clear.

Exoplanets have aurorae, too.

Cohen and his colleagues used computer models to study what would happen if a gas giant in a close orbit, just a few million miles from its star, were hit by a stellar blast. He wanted to learn the effect on the exoplanet’s atmosphere and surrounding magnetosphere. In this scenario, the solar storm is much more focused and far more concentrated when it impacts a “hot Jupiter”. In our solar system, a coronal mass ejection spreads out before it reaches us, but what would happen if it collided with a nearer planet?

“The impact to the exoplanet would be completely different than what we see in our solar system, and much more violent,” said co-author Vinay Kashyap of CfA.

Using modeling, the team took a look at the scenario. The solar blast would slice into the exoplanet’s atmosphere and weaken its magnetic shield. The auroral activity would then form a ring around the equator, 100-1000 times more energetic than seen here on Earth. It would then travel up and down the planet’s surface from pole to pole for hours, gradually weakening – yet the planet’s magnetosphere would save it from erosion. This type of study is important for understating habitable properties of Earth-like worlds.

“Our calculations show how well the planet’s protective mechanism works,” explained Cohen. “Even a planet with a magnetic field much weaker than Jupiter’s would stay relatively safe.”

Original News Source: Harvard-Smithsonian Center for Astrophysics News.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

A Nebula that Extends its Hand into Space

The Gum Nebula is an emission nebula almost 1400 light-years away. It's home to an…

3 hours ago

41,000 Years Ago Earth’s Shield Went Down

Earth is naked without its protective barrier. The planet's magnetic shield surrounds Earth and shelters…

6 hours ago

Fall Into a Black Hole With this New NASA Simulation

No human being will ever encounter a black hole. But we can't stop wondering what…

6 hours ago

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

15 hours ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

1 day ago

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

1 day ago