Virtual Observatory Discovers New Cataclysmic Variable

[/caption]

In my article two weeks ago, I discussed how data mining large surveys through online observatories would lead to new discoveries. Sure enough, a pair of astronomers, Ivan Zolotukhin and Igor Chilingarian using data from the Virtual Observatory, has announced the discovery of a cataclysmic variable (CV).


Cataclysmic variables are often called “novae”. However, they’re not a single star. These stars are actually binary systems in which their interactions cause large increases in brightness as matter is accreted from a secondary (usually post main-sequence) star, onto a white dwarf. The accretion of matter piles up on the surface until the it reaches a critical density and undergoes a brief but intense phase of fusion increasing the brightness of the star considerably. Unlike type Ia supernovae, this explosion doesn’t meet the critical density required to cause a core collapse.

The team began by considering a list of 107 objects from the Galactic Plane Survey conducted by the Advanced Satellite for Cosmology and Astrophysics (ASCA, a Japanese satellite operating in the x-ray regime). These objects were exceptional x-ray emitters that had not yet been classified. While other astronomers have done targeted investigations of individual objects requiring new telescope time, this team attempted to determine whether any of the odd objects were CVs using readily available data from the Virtual Observatory.

Since the objects were all strong x-ray sources, they all met at least one criteria of being a CV. Another was that CV stars often are strong emitters for Hα since the eruptions often eject hot hydrogen gas. To analyze whether or not any of the objects were emitters in this regime, the astronomers cross referenced the list of objects with data from the Isaac Newton Telescope Photometric Hα Survey of the northern Galactic plane (IPHAS) using a color-color diagram. In the field of view of the IPHAS survey that overlapped with the region from the ASCA image for one of the objects, the team found an object that emitted strongly in the Hα. But in such a dense field and with such different wavelength regimes, it was difficult to identify the objects as the same one.

To assist in determining if the two interesting objects were indeed the same, or whether they just happened to lie nearby, the pair turned to data from Chandra. Since Chandra has much smaller uncertainty in the positioning (0.6 arcsecs), the pair was able to identify the object and determine that the interesting object from IPHAS was indeed the same one from the ASCA survey.

Thus, the object passed the two tests the team had devised for finding cataclysmic variables. At this point, followup observation was warranted. The astronomers used the 3.5-m Calar Alto telescope to conduct spectroscopic observations and confirmed that the star was indeed a CV. In particular, it looked to be a subclass in which the primary white dwarf star had a strong enough magnetic field to disrupt the accretion disk and the point of contact is actually over the poles of the star (this is known as a intermediate polar CV).

This discovery is an example of how discoveries are just waiting to happen with data that’s already available and sitting in archives, waiting to be explored. Much of this data is even available to the public and can be mined by anyone with the proper computer programs and know-how. Undoubtedly, as organization of these storehouses of data becomes organized in more user friendly manners, additional discoveries will be made in such a manner.

Jon Voisey

Jon has his Bachelors of Science in Astronomy from the University of Kansas (2008). Since graduation, he has taught high school, worked in antique jewelry, and now works as a data analyst. As a hobby, he does medieval re-creation and studies pre-telescopic astronomy focusing. His research can be found at jonvoisey.net/blog.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

1 day ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

1 day ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago