The Strange Warm Spot of upsilon Andromedae b

[/caption]

If you set a big black rock outside in the Sun for a few hours, then go and touch it, you’d expect the warmest part of the rock to be that which was facing the Sun, right? Well, when it comes to exoplanets, your expectations will be defied. A new analysis of a well-studied exoplanetary system reveals that one of the planets – which is not a big black rock, but a Jupiter-like ball of gas – has its warmest part opposite that of its star.

The system of Upsilon Andromedae, which lies 44 light years away from the Earth in the constellation Andromeda, is a much studied system of planets that orbit around a star a little more massive and slightly hotter than our Sun.

The closest planet to the star, upsilon Andromeda b, was the first exoplanet to have its temperature taken by The Spitzer Space Telescope. As we reported back in 2006, upsilon Andromeda b was thought to be tidally locked to the star and show corresponding temperature changes at it went around its host star. That is, as it went behind the star from our perspective, the face was warmer than when it was in front of the star from our perspective. Simple enough, right? These original results were published in a paper in Science on October 27th, 2006, available here.

As it turns out, this temperature change scenario is not the case. UCLA Professor of Physics and Astronomy Brad Hansen, who is a co-author on both the 2006 paper and updated results, explains, “The original report was based on just a few hours of data, taken early in the mission, to see whether such a measurement was even possible (it is close to the limit of the expected performance of the instrument). Since the observations suggested it was possible to detect, we were awarded a larger amount of time to do it in more detail.”

Observations of upsilon Andromedae b were taken with the Spitzer again in February of 2009. Once the astronomers were able to study the planet more, they discovered something odd – just how warm the planet was when it passed in front of the star from our perspective was a lot warmer than when it passed behind, just the opposite of what one would expect, and opposite of the results they originally published. Here’s a link to an animation that helps explain this strange feature of the planet.

What the astronomers discovered – and have yet to explain fully – is that there is a “warm spot” about 80 degrees opposite of the face of the planet that is pointed towards the star. In other words, the warmest spot on the planet is not on the side of the planet that is receiving the most radiation from the star.

This in itself is not a novelty. Hansen said, “There are several exoplanets observed with warm spots, including some whose spots are shifted relative to the location facing the star (an example is the very well studied system HD189733b). The principal difference in this case is that the shift we observe is the largest known.”

Upsilon Andromedae b does not transit in front of its star from our vantage point on the Earth. Its orbit is inclined by about 30 degrees, so it appears to be passing “below” the star as it comes around the front. This means that astronomers cannot use the transit method of exoplanetary study to get a handle on its orbit, but rather measure the tug that the planet exerts on the star. It has been determined that upsilon Andromedae b orbits about every 4.6 days, has a mass 0.69 that of Jupiter and is about 1.3 Jupiter radii in diameter. To get a better idea of the whole system of upsilon Andromedae, see this story we ran earlier this year.

So what, exactly, could be causing this bizarrely placed warm spot on the planet? The paper authors suggest that equatorial winds – much like those on Jupiter – could be transferring heat around the planet.

A graph and visual representation of the hot spot as the planet orbits the star upsilon Andromedae. Image credit: NASA/JPL-Caltech/UCLA

Hansen explained, “At the sub-stellar point (the one closest to the star) the amount of radiation being absorbed from the star is highest, so the gas there is heated more. It will therefore have a tendency to flow away from the hot region towards cold regions. This, combined with rotation will give a “trade wind”-like structure to the gas flow on the planet… The big uncertainty is how that energy is eventually dissipated. The fact that we observe a hot spot at roughly 90 degrees suggests that this occurs somewhere near the “terminator” (the day/night edge). Somehow the winds are flowing around from the sub-stellar point and then dissipating as they approach the night side. We speculate that this may be from the formation of some kind of shock front.”

Hansen said that they are unsure just how large this warm spot is. “We have only a very crude measure of this, so we have modeled as basically two hemispheres – one hotter than the other. One could make the spot smaller and make it correspondingly hotter and you would get the same effect. So, one can trade off spot size versus temperature contrast while still matching the observations.”

The most recent paper, which is co-authored by members from the United States and the UK, will appear in the Astrophysical Journal. If you’d like to go outside and see the star upsilon Andromedae,here’s a star chart.

Source: JPL Press Release, Arxiv here and here , email interview with Professor Brad Hansen.

Nicholos Wethington

I started writing for Universe Today in September 2007, and have loved every second of it since! Astronomy and science are fascinating for me to learn and write about, and it makes me happy to share my passion for science with others. In addition to the science writing, I'm a full-time bicycle mechanic and the two balance nicely, as I get to work with my hands for part of the day, and my head the other part (some of the topics are a stretch for me to wrap my head around, too!).

Recent Posts

Psyche is Still Sending Data Home at Broadband Speeds

When I heard about this I felt an amused twinge of envy. Over the last…

7 mins ago

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history…

6 hours ago

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

2 days ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

2 days ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

2 days ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago