Categories: 1Old Guide (Archive)

What is Gravitational Force?

Newton’s Law of Universal Gravitation is used to explain gravitational force. This law states that every massive particle in the universe attracts every other massive particle with a force which is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. This general, physical law was derived from observations made by induction. Another way, more modern, way to state the law is: ‘every point mass attracts every single other point mass by a force pointing along the line intersecting both points. The force is proportional to the product of the two masses and inversely proportional to the square of the distance between the point masses’.

Gravitational force surrounds us. It is what decides how much we weigh and how far a basketball will travel when thrown before it returns to the surface. The gravitational force on Earth is equal to the force the Earth exerts on you. At rest, on or near the surface of the Earth, the gravitational force equals your weight. On a different astronomical body like Venus or the Moon, the acceleration of gravity is different than on Earth, so if you were to stand on a scale, it would show you that you weigh a different amount than on Earth.

When two objects are gravitational locked, their gravitational force is centered in an area that is not at the center of either object, but at the barycenter of the system. The principle is similar to that of a see-saw. If two people of very different weights sit on opposite sides of the balance point, the heavier one must sit closer to the balance point so that they can equalize each others mass. For instance, if the heavier person weighs twice as much as the lighter one, they must sit at only half the distance from the fulcrum. The balance point is the center of mass of the see-saw, just as the barycenter is the balance point of the Earth-Moon system. This point that actually moves around the Sun in the orbit of the Earth, while the Earth and Moon each move around the barycenter, in their orbits.

Each system in the galaxy, and presumably, the universe, has a barycenter. The push and pull of the gravitational force of the objects is what keeps everything in space from crashing into one another.

We have written many articles about gravitational force for Universe Today. Here’s an article about gravity in space, and here’s an article about the discovery of gravity.

If you’d like more info on Gravity, check out The Constant Pull of Gravity: How Does It Work?, and here’s a link to Gravity on Earth Versus Gravity in Space: What’s the Difference?.

We’ve also recorded an entire episode of Astronomy Cast all about Gravity. Listen here, Episode 102: Gravity.

Jerry Coffey

Jerry Coffey is a Registered Nurse and father of 5. He enjoys skydiving, astronomy, and time with his children.

Share
Published by
Jerry Coffey

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

12 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

12 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

13 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

13 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

14 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

1 day ago