Astronomy Without A Telescope – Brown Dwarfs Are Magnetic Too

[/caption]

I feel a certain empathy for brown dwarfs. The first confirmed finding of one was only fifteen years ago and they remain frequently overlooked in most significant astronomical surveys. I mean OK, they can only (stifles laughter) burn deuterium but that’s something, isn’t it?

It has been suggested that a clever way of finding more brown dwarfs is in the radio spectrum. A brown dwarf with a strong magnetic field and a modicum of stellar wind should produce an electron cyclotron maser. Roughly speaking (something you can always depend on from this writer), electrons caught in a magnetic field are spun energetically in a tight circle, stimulating the emission of microwaves in a particular plane from the star’s polar regions. So you get a maser, essentially the microwave version of a laser, that would be visible on Earth – if we are in line of sight of it.

While the maser effect can probably be weakly generated by isolated brown dwarfs, it’s more likely we will detect one in binary association with a less mass-challenged star that is capable of generating a more vigorous stellar wind to interact with the brown dwarf’s magnetic field.

This maser effect is also proposed to offer a clever way of finding exoplanets. An exoplanet could easily outshine its host star in the radio spectrum if its magnetic field is powerful enough.

So far, searches for confirmed radio emissions from brown dwarfs or orbiting bodies around other stars have been unsuccessful, but this may become achievable in the near future with the steadily growing resolution of the European LOw Frequency ARray (LOFAR), which will be the best such instrument around until the Square Kilometer Array (SKA) is built – which won’t be seeing first light before at least 2017.

Geometrically-challenged aliens struggling to make a crop circle? Nope, it's a component of the LOFAR low frequency radio telescope array. Credit: www.lofar.org

But even if we can’t see brown dwarfs and exoplanets in radio yet, we can start developing profiles of likely candidates. Christensen and others have derived a magnetic scaling relationship for small scale celestial objects, which delivers predictions that fit well with observations of solar system planets and low mass main sequence stars in the K and M spectral classes (remembering the spectral class mantra Old Backyard Astronomers Feel Good Knowing Mnemonics).

Using the Christensen model, it’s thought that brown dwarfs of about 70 Jupiter masses may have magnetic fields in the order of several kilo-Gauss in their first hundred million years of life, as they burn deuterium and spin fast. However, as they age, their magnetic field is likely to weaken as deuterium burning and spin rate declines.

Brown dwarfs with declining deuterium burning (due to age or smaller starting mass) may have magnetic fields similar to giant exoplanets, anywhere from 100 Gauss up to 1 kilo-Gauss. Mind you, that’s just for young exoplanets – the magnetic fields of exoplanets also evolve over time, such that their magnetic field strength may decrease by a factor of ten over 10 billion years.

In any case, Reiners and Christensen estimate that radio light from known exoplanets within 65 light years will emit at wavelengths that can make it through Earth’s ionosphere – so with the right ground-based equipment (i.e. a completed LOFAR or a SKA) we should be able to start spotting brown dwarfs and exoplanets aplenty.

Further reading: Reiners, A. and Christensen, U.R. (2010) A magnetic field evolution scenario for brown dwarfs and giant planets.

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

1 day ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

1 day ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

3 days ago