Categories: AstronomyCosmology

Astronomy Without A Telescope – Is Time Real?

Time is an illusion caused by the passage of history (Douglas Adams 1952-2001).

The way that we deal with time is central to a major current schism in physics. Under classic Newtonian physics and also quantum mechanics – time is absolute, a universal metronome allowing you determine whether events occur simultaneously or in sequence. Under Einstein’s physics, time is not absolute – simultaneity and sequence depend on who’s looking. For Einstein, the speed of light (in a vacuum) is constant and time changes in whatever way is required to keep the speed of light constant from all frames of reference.

Under general relativity (GR) you are able to experience living for three score and ten years regardless of where you are or how fast you’re moving, but other folk might measure that duration quite differently. But even under GR, we need to consider whether time only has meaning for sub-light speed consciousnesses such as us. Were a photon to have consciousness, it may not experience time – and, from its perspective, would cross the apparent 100,000 light year diameter of the Milky Way in an instant. Of course, that gets you wondering whether space is real either. Hmm…

Quantum mechanics does (well, sometimes) require absolute time – most obviously in regards to quantum entanglement where determining the spin of one particle, determines the spin of its entangled partner instantaneously and simultaneously. Leaving aside the baffling conundrums imposed by this instantaneous action over a distance – the simultaneous nature of the event implies the existence of absolute time.

In one attempt to reconcile GR and quantum mechanics, time disappears altogether – from the Wheeler-DeWitt equation for quantum gravity – not that many regard this as a 100% successful attempt to reconcile GR and quantum mechanics. Nonetheless, this line of thinking highlights the ‘problem of time’ when trying to develop a Theory of Everything.

The winning entries for a 2008 essay competition on the nature of time run by the Fundamental Questions Institute could be roughly grouped into the themes ‘time is real’, ‘no, it isn’t’ and ‘either way, it’s useful so you can cook dinner.’

The ‘time isn’t real’ camp runs the line that time is just a by-product of what the universe does (anything from the Earth rotating to the transition of a Cesium atom – i.e. the things that we calibrate our clocks to).

How a return to equilibrium after a random downward fluctuation in entropy might appear. First there was light, then a whole bunch of stuff happened and then it started getting cold and dark and empty.

Time is the fire in which we burn (Soran, Star Trek bad guy, circa 24th century).

‘Time isn’t real’ proponents also refer to Boltzmann’s attempt to trivialise the arrow of time by proposing that we just live in a local pocket of the universe where there has been a random downward fluctuation of entropy – so that the perceived forward arrow of time is just a result of the universe returning to equilibrium – being a state of higher entropy where it’s very cold and most of the transient matter that we live our lives upon has evaporated. It is conceivable that another different type of fluctuation somewhere else might just as easily result in the arrow pointing the other way.

Nearly everyone agrees that time probably doesn’t exist outside our Big Bang universe and the people who just want to get on and cook dinner suggest we might concede that space-time could be an emergent property of quantum mechanics. With that settled, we just need to rejig the math – over coffee maybe.

I was prompted to write this after reading a Scientific American June 2010 article, Time Is An Illusion by Craig Callender.

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

7 hours ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

8 hours ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

10 hours ago

Astronomers Think They’ve Found Examples of the First Stars in the Universe

When the first stars in the Universe formed, the only material available was primordial hydrogen…

11 hours ago

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

1 day ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

1 day ago