Scientist Explains New LOFAR Image of Quasar 3C196

[/caption]

We received several questions about our article on the new high-resolution LOFAR (LOw Frequency Array) image of quasar 3C196, concerning what was actually visible in this new image. We contacted LOFAR scientist Olaf Wucknitz from the Argelander-Institute for Astronomy at Bonn University in Germany, and he has provided an extensive explanation.

“3C196 is a quasar, the core of which is sitting right in the middle of the radio component,” Wucknitz said. “The core itself is not seen in radio observations but only on optical images. A possible reason for not seeing the core or the jets is that the central engine may not be very active at the moment (or rather it was not very active when the radiation left the object about 7 billion years ago). Alternatively it is possible that the inner parts of this source radiate very inefficiently so that we just do not see them in the radio images.”

In any case, he said, there must have been considerable activity earlier, because extensions of the jets that form radio lobes and hot spots are able to be seen in the image.

“The main lobes seem to be the bright SW component and the more compact NE component. When compared to observations at higher frequencies, these have the flattest spectra, i.e. they dominate at higher frequencies,” Wucknitz continued. “Then there is the other pair of components, the fuzzier E and W components. They are much weaker at higher frequencies.”

“The standard explanation for this would be that the jets from the core are changing its orientation with time (e.g. due to precession caused by a second black hole near the core, but this is very speculative). In this scenario the more extended components are older. Because of their age, the electrons causing the radiation have lost so much energy that we now see more low-frequency (i.e. low energy) radiation. The more compact components would be younger and therefore produce more high-frequency radiation.”

Interestingly, the W and E components show very different “colors” between 30-80 MHz, he said, so there must be some difference in the physical conditions in these two regions.

“Another possible explanation is that the compact components are the main lobes. There the jets interact with the surrounding medium. The matter is deflected and causes an outflow which we see as the other components.”

So basically, Wucknitz said, with the study of the data now available, they cannot draw firm conclusions, and he and his team have not had the opportunity to write a paper on the new image. “At the moment we are concentrating on getting LOFAR to run routinely and try to resist the temptation to do too much science with the first images. I hope that we can provide a real scientific analysis of this and similar images later this year.”

However, he suggested a couple of earlier papers that discuss quasar 3C196.

“Rotationally symmetric structure in two extragalactic radio sources” by Lonsdale, C. J.; Morison, I. describes the model of rotating jets for several obects including 3C196.

And this paper, Kiloparsec scale structure in the hotspots of 3C 196 by Lonsdale, C. J. discuses how previous observations by the MERLIN array revealed the presence of complex structure in each of the two bright hot spots in the quasar.

Wucknitz said he looks forward to delving into this object deeper as more of the LOFAR stations come online. “Once we can calibrate our new data better and produce slightly nicer images, we can hopefully say more and decide for one of the models,” he said.

Thanks to Olaf Wucknitz for providing an explanation of this new LOFAR image. Still have questions? Post them in the comments below.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

A New Way to Measure the Rotation of Black Holes

Sometimes, astronomers get lucky and catch an event they can watch to see how the…

2 hours ago

Could Martian atmospheric samples teach us more about the Red Planet than surface samples?

NASA is actively working to return surface samples from Mars in the next few years,…

14 hours ago

Black Holes are Firing Beams of Particles, Changing Targets Over Time

Black holes seem to provide endless fascination to astronomers. This is at least partly due…

1 day ago

Another Giant Antarctic Iceberg Breaks Free

On May 20th, 2024, an iceberg measuring 380 square kilometers (~147 mi2) broke off the…

2 days ago

Fish are Adapting to Weightlessness on the Chinese Space Station

Four zebrafish are alive and well after nearly a month in space aboard China's Tiangong…

2 days ago

Marvel at the Variety of Planets Found by TESS Already

The hunt for new exoplanets continues. On May 23rd, an international collaboration of scientists published…

2 days ago