Categories: Black Holes

Galaxy Mergers Make Black Holes ‘Light Up’

Only about 1% of supermassive black holes emit large amounts of energy, and astronomers have wondered for decades why so few exhibit this behavior. Data from Swift satellite, which normally studies gamma ray bursts, has allowed scientists to confirm that black holes “light up” when galaxies collide, and the data may offer insight into the future behavior of the black hole in our own Milky Way galaxy.

The intense emission from galaxy centers, or nuclei, arises near a supermassive black hole containing between a million and a billion times the sun’s mass. Giving off as much as 10 billion times the sun’s energy, some of these active galactic nuclei (AGN) are the most luminous objects in the universe. They include quasars and blazars.

“Theorists have shown that the violence in galaxy mergers can feed a galaxy’s central black hole,” said Michael Koss, the study’s lead author and a graduate student at the University of Maryland in College Park. “The study elegantly explains how the black holes switched on.”

Swift was launched in 2004, and while its Burst Alert Telescope (BAT) is waiting to detect the next gamma ray burst, it also has been mapping the sky using hard X-rays, said Neil Gehrels, Swift’s principal investigator. “In fact, it detected its 508th gamma ray burst about 30 minutes ago,” Gehrels said at the press conference the morning of May 26th at the 216th meeting of the American Astronomical Society. “But building up its exposure year after year, the Swift BAT Hard X-ray Survey is the largest, most sensitive and complete census of the sky at these energies.”

Until this hard X-ray survey, astronomers never could be sure they had counted the majority of the AGN. Thick clouds of dust and gas surround the black hole in an active galaxy, which can block ultraviolet, optical and low-energy, or soft X-ray, light. Infrared radiation from warm dust near the black hole can pass through the material, but it can be confused with emissions from the galaxy’s star-forming regions. Hard X-rays can help scientists directly detect the energetic black hole.

[/caption]

The survey, which is sensitive to AGN as far as 650 million light-years away, uncovered dozens of previously unrecognized systems.

“The Swift BAT survey is giving us a very different picture of AGN,” Koss said. The team finds that about a quarter of the BAT galaxies are in mergers or close pairs. “Perhaps 60 percent of these galaxies will completely merge in the next billion years. We think we have the ‘smoking gun’ for merger-triggered AGN that theorists have predicted.”

“A big problem in astronomy is understanding how black holes grow and are fed,” said Joel Bregman from the University of Michigan. “We know growth in the early stages of a black hole’s life is a combination of mergers plus accretion of gas and dust from nearby stars, and we think that the accretion is the more important process. But this shows us that the feeding of the gas and dust has been channeled into the center at a fairly early stage, and the disturbance from the mergers allows gas to be funneled into the center and flow into the black hole.”

“We’ve never seen the onset of AGN activity so clearly,” said Bregman, who was not involved in the study. “The Swift team must be identifying an early stage of the process with the Hard X-ray Survey.”

Other members of the study team include Richard Mushotzky and Sylvain Veilleux at the University of Maryland and Lisa Winter at the Center for Astrophysics and Space Astronomy at the University of Colorado in Boulder.

The study will appear in the June 20 issue of The Astrophysical Journal Letters.

Source: NASA, NASA press conference

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

7 hours ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

13 hours ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

18 hours ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 days ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

2 days ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

2 days ago