Categories: Astronomy

Gamma Waves

“Gamma wave” is not, strictly speaking, a standard scientific term … at least not in physics, and this is rather curious (the standard physics term is “gamma ray”).

The part of the electromagnetic spectrum ‘to the left’ (high energy/short wavelength/high frequency) is called the gamma ray region; the word ‘ray’ was in common use at the time of the discovery of this form of radiation (‘cathode rays’, ‘x-rays’, and so on); by the time it was discovered that gamma rays (and x-rays) are electromagnetic radiation (and that cathode rays, beta radiation, and alpha radiation, is not), the word ‘ray’ was well-entrenched. On the other hand, radio waves were discovered as a result of a new theory of electromagnetism … Maxwell’s equations predict the existence of electromagnetic waves (and that’s exactly what Hertz discovered, in 1886).

Paul Villard is credited with having discovered gamma radiation, in 1900, though it was Rutherford who gave them the name “gamma rays”, in 1903 (Rutherford had discovered alpha and beta rays in 1899). So when, and how, was it discovered that gamma rays are, in fact, gamma waves (just like radio waves, only with much, much, much shorter wavelengths)? In 1914; Ernest Rutherford and Edward Andrade used crystal diffraction to measure the wavelength of gamma rays emitted by Radium B (which is the radioactive isotope of lead, 214Pb) and Radium C (which is the radioactive isotope of bismuth, 214Bi).

We usually think of electromagnetic radiation in terms of photons, a term which arises from quantum physics; for astronomy (which is almost entirely based on electromagnetic radiation/photons), however, instruments and detectors are nearly always more easily understood in terms of whether they detect waves (e.g. radio receivers) or particles (e.g. scintillators). In gamma ray astronomy, in all instruments used to date, the particle nature of gamma rays is key (for direct detection anyway; Cherenkov telescopes work quite differently!). Can the circle be closed? Is it possible to use crystal diffraction (or something similar) – as Rutherford and Andrade did – and the wave nature of gamma rays, to build gamma ray astronomical instruments? Yes … and the next generation of gamma ray observatories might include just such instruments!

NASA has some good background material on gamma rays as electromagnetic radiation, and gamma ray astronomy: for example, Gamma Rays, and Electromagnetic Spectrum.

Universe Today has a few stories related to the wave nature of gamma rays; for example INTEGRAL Dissects Super-Bright Gamma Ray Burst, and Watching Gamma Rays from the Safety of Earth. Here’s some information on alpha radiation.

Astronomy Cast episodes Gamma Ray Astronomy, Detectors, and Electromagnetism give good background too.

Sources:
Wikipedia
NASA

Jean Tate

Hi! When I was only six (or so), I went out one clear but windy night with my uncle and peered through the eyepiece of his home-made 6" Newtonian reflector. The dazzling, shimmering, perfect globe-and-ring of Saturn entranced me, and I was hooked on astronomy, for life. Today I'm a freelance writer, and began writing for Universe Today in late 2009. Like Tammy, I do like my coffee, European strength please. Contact me: JeanTate.UT@gmail.com

Recent Posts

Update your Desktop Wallpaper with 25 New Images from Chandra

It’s not always possible to observe the night sky from the surface of the Earth.…

2 hours ago

SpaceX Resumes Falcon 9 Rocket Launches After FAA Go-Ahead

SpaceX is flying again after the Federal Aviation Administration ruled that the company can resume…

3 hours ago

Is This How You Get Hot Jupiters?

When we think of Jupiter-type planets, we usually picture massive cloud-covered worlds orbiting far from…

1 day ago

Now Uranus’ Moon Ariel Might Have an Ocean too

Venus is known for being really quite inhospitable with high surface temperatures and Mars is…

1 day ago

Why is JWST Having So Much Trouble with the TRAPPIST-1 System?

When the James Webb Space Telescope was launched it came with a fanfare expecting amazing…

2 days ago

Planetary Habitability Depends on its Star’s Magnetic Field

The extrasolar planet census recently passed a major milestone, with 5500 confirmed candidates in 4,243…

2 days ago