Categories: Astronomy

New Movie Reveals Birth of Super-Suns

A two-year look at “proplyds,” or protoplanetary disks in the constellation Orion has provided astronomers with a new high-resolution time-lapse movie that reveals the process of how massive star form. The birth of the largest stars has been mysterious, in part, because massive stars are rare and tend to spend their youth enshrouded by dust and gas hiding them from view. “We know how these stars die, but not how they are born,” said Lincoln Greenhill, a principal investigator for team using radio images a thousand times sharper and more detailed than any previously obtained.

Using the Very Long Baseline Array (VLBA) as a powerful “zoom lens, astronomers studied a massive young protostar called Source I (pronounced “eye”) in Orion. The youthful cluster cannot be seen with traditional telescopes because of the surrounding gas and dust, but this new look shows that massive stars form like their smaller siblings, with disk accretion and magnetic fields playing crucial roles.

The team observed Source I at monthly intervals over two years and then assembled the individual images into a time-lapse movie. Click here to watch the movie.

The VLBA detected thousands of silicon monoxide gas clouds called masers – naturally occurring laser-like beacons often associated with star formation. Some masers were as close to the protostar as Jupiter is to our Sun, which is also a record. Many of the masers existed long enough for their motions to be tracked across the sky and along our line of sight, yielding their 3-d motions through space.

“Source I is the richest source of masers in the Galaxy, that we know of,” said Lynn Matthews, lead author of the new work, who is now a researcher at the MIT Haystack Observatory. “Without the masers, we couldn’t track the gas motions in such detail so close to this massive star, and would be relatively blind to its formation.”

“In astronomy, it’s rare to see changes over the course of a human lifetime. With this new movie, we can see changes over just a few months as gas clumps swarm around this young protostar,” added Smithsonian astronomer and co-author Ciriaco Goddi.

The resulting movie reveals signs of a rotating accretion disk, where gas is swirling closer and closer to the protostar at the center. It also shows material flowing outward perpendicular to the disk in two large V’s – actually the edges of cone-shaped streams of gas. Such outflows foster star formation by carrying angular momentum away from the system.

Intriguingly, the outflow streams appear to curve as they leave the disk. “The bending path of these masers provides key evidence that magnetic fields may be influencing gas motions very close to the protostar,” pointed out Claire Chandler of NRAO, a co-principal investigator of the study.

Magnetic field lines are familiar from their effect on iron filings sprinkled around a bar magnet, outlining loops extending from one pole of the magnet to the other. In the case of Source I and other massive protostars, magnetic field lines may extend outward into space, wrapping in a helix that is shaped much like Twizzlers candy. Outflowing gas streams along those field lines.

“Magnetic fields are supposed to be weak and unimportant to the birth process for massive stars,” said Matthews. “But masers would not travel along gentle arcs unless they experience some sort of force – probably a magnetic force.”

The data don’t show whether the magnetic field arises in the star or in the accretion disk. Future observations by the Expanded Very Large Array (E-VLA) and the Atacama Large Millimeter Array (ALMA) may be able to distinguish between competing hypotheses. The team plans to look for other fingerprints of magnetic fields around Source I.

“Our two-year movie is just the beginning,” said Smithsonian astronomer and co-principal investigator Elizabeth Humphreys.

Source: Harvard Smithsonian

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

18 hours ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

23 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

2 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

2 days ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 days ago