Categories: Astronomy

Finding Buried Treasure on Mars: Radar Map Confirms Climate Cycles

[/caption]

A radar instrument on the Mars Reconnaissance Orbiter has essentially looked below the surface of the Red Planet’s north-polar ice cap, and found data to confirm theoretical models of Martian climate swings during the past few million years. The new, three-dimensional map using 358 radar observations provides a cross-sectional view of the north-polar layered deposits. “The radar has been giving us spectacular results,” said Jeffrey Plaut of JPL, a member of the science team for the Shallow Radar instrument. “We have mapped continuous underground layers in three dimensions across a vast area.”

Alignment of the layering patterns with the modeled climate cycles provides insight about how the layers accumulated. These ice-rich, layered deposits cover an area one-third larger than Texas and form a stack up to 2 kilometers (1.2 miles) thick atop a basal deposit with additional ice.

“Contrast in electrical properties between layers is what provides the reflectivity we observe with the radar,” said Nathaniel Putzig of Southwest Research Institute, Boulder, CO, who led the science team. “The pattern of reflectivity tells us about the pattern of material variations within the layers.”

Earlier radar observations indicated that the Martian north-polar layered deposits are mostly ice. Radar contrasts between different layers in the deposits are interpreted as differences in the concentration of rock material, in the form of dust, mixed with the ice. These deposits on Mars hold about one-third as much water as Earth’s Greenland ice sheet.

Their radar results show that high-reflectivity zones, with multiple contrasting layers, alternate with more-homogenous zones of lower reflectivity. Patterns of how these two types of zones alternate can be correlated to models of how changes in Mars’ tilt on its axis have produced changes in the planet’s climate in the past 4 million years or so, but only if some possibilities for how the layers form are ruled out.

“We’re not doing the climate modeling here; we are comparing others’ modeling results to what we observe with the radar, and using that comparison to constrain the possible explanations for how the layers form,” Putzig said.

The most recent 300,000 years of Martian history are a period of less dramatic swings in the planet’s tilt than during the preceding 600,000 years. Since the top zone of the north-polar layered deposits — the most recently deposited portion — is strongly radar-reflective, the researchers propose that such sections of high-contrast layering correspond to periods of relatively small swings in the planet’s tilt.

They also propose a mechanism for how those contrasting layers would form. The observed pattern does not fit well with an earlier interpretation that the dustier layers in those zones are formed during high-tilt periods when sunshine on the polar region sublimates some of the top layer’s ice and concentrates the dust left behind. Rather, it fits an alternative interpretation that the dustier layers are simply deposited during periods when the atmosphere is dustier.

The new radar mapping of the extent and depth of five stacked units in the north-polar layered deposits reveals that the geographical center of ice deposition probably shifted by 400 kilometers (250 miles) or more at least once during the past few million years.

The Italian Space Agency operates the Shallow Radar instrument.

More information about the MRO mission.

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

What Deadly Venus Can Tell Us About Life on Other Worlds

Even though Venus and Earth are so-called sister planets, they're as different as heaven and…

3 hours ago

A Nebula that Extends its Hand into Space

The Gum Nebula is an emission nebula almost 1400 light-years away. It's home to an…

23 hours ago

41,000 Years Ago Earth’s Shield Went Down

Earth is naked without its protective barrier. The planet's magnetic shield surrounds Earth and shelters…

1 day ago

Fall Into a Black Hole With this New NASA Simulation

No human being will ever encounter a black hole. But we can't stop wondering what…

1 day ago

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

1 day ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

2 days ago