Categories: Astronomy

The Strange Case of Supernova SN2008ha

[/caption]

Almost immediately after it was discovered last November by 14-year-old Caroline Moore of the Puckett Observatory Supernova Search Team, professional astronomers knew supernova SN2008ha was a strange one.  The spectra of the blast showed no signs of hydrogen, which meant it must be a Type Ia supernova caused by the explosion of a white dwarf accreting matter in a binary star system.  But if so, why was it some 50 times fainter than other supernova of its type?

Now in a controversial new paper in the journal Nature, astronomers from Queen’s University Belfast have proposed a new explanation of this supernova.  The researchers, led by Dr. Stefano Valenti, suggest that even though the explosion contained no hydrogen, SN2008ha could be a Type II supernova, the kind caused by the core collapse of a massive star.

Valenti and his colleagues argue that, despite the lack of hydrogen, the spectrum of SN2008ha more closely resembles Type II supernovae.  They cite the lack of emission lines from ionized silicon as as evidence of why SN2008ha is not a Type Ia.  And they cite other supernovae that exhibited similar characteristics, which he says might be less extreme examples of hydrogen-deficient Type II supernovae.

“SN2008ha is the most extreme example of a group of supernovae that show similar properties”, said Dr. Valenti. Up until now the community had thought that they were from the explosion of white dwarfs, which we call type  Ia supernovae. But we think SN2008ha doesn’t quite fit this picture and appears physically related to massive stars”.

But if SN2008ha is a Type II supernova, where did the hydrogen go?  The answer might be mass loss.  Some stars are so massive and luminous that they lose their outer hydrogen layers in strong outflowing stellar winds.  And because they’re so massive, their cores collapse into a black hole without transfering energy to the outer layers of the star, which may explain the low luminosity of the explosion.

“The implications are quite important. If this is a massive star explosion, then it is the first one that might fit the theoretical models of massive stars that lose their outer layers through their huge luminosity pressure and then, perhaps, collapse to black holes with a whimper”, said Dr. Valenti.

Professor Stephen Smartt from Queen’s added “This is still quite controversial, we have put this idea forward and it certainly needs to be taken seriously.

Dr. Valenti’s team is keen to use new deep, time resolved surveys of the Universe to find more of these and test their ideas. One such experiment is the first of the Pan-STARRS telescopes that has started surveying the sky in the last month.

Source:  Queen’s University Belfast

Original Paper:  Nature

Brian Ventrudo

Brian Ventrudo is a writer, longtime amateur astronomer, and former optoelectronics scientist who enjoys gazing at stars more than looking into a laser beam. Brian also writes for One-Minute Astronomer, a site that helps backyard stargazers better enjoy their time under the stars.

Recent Posts

A Nebula that Extends its Hand into Space

The Gum Nebula is an emission nebula almost 1400 light-years away. It's home to an…

8 hours ago

41,000 Years Ago Earth’s Shield Went Down

Earth is naked without its protective barrier. The planet's magnetic shield surrounds Earth and shelters…

10 hours ago

Fall Into a Black Hole With this New NASA Simulation

No human being will ever encounter a black hole. But we can't stop wondering what…

11 hours ago

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

19 hours ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

1 day ago

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

1 day ago