[/caption]

The southern circumpolar constellation of Volans was first introduced in 1589 by Petrus Plancius on a celestial globe which was later added to Johann Bayer’s atlas – Uranometria – in 1603. Volans spans 141 square degrees of sky, ranking 76th in size. It has 6 mains stars in its asterism and 12 Bayer Flamsteed designated stars within its confines. Volans is bordered by the constellation of Carina, Pictor, Dorado, Mensa and Chamaeleon and is best seen at culmination during the month of March.

Since Volans is considered a “new” constellation, it has no mythology associated with it – only what the constellation is meant to represent. The constellation of Volans was originally created by Petrus Plancius from the stellar observations of Dutch sea navigators Pieter Dirkszoon Keyser and Frederick de Houtman when exploring the southern hemisphere. Volans’ stellar patterns became known when it appeared on a celestial globe in 1597 and was considered a constellation when it was added to Johann Bayer’s Uranometria catalog in 1603 and it was then called Piscis Volans – the “Flying Fish”. When it was later adopted as a permanent constellation by the International Astronomical Union, the name was simplified and shortened to just Volans.

Let’s begin our binocular tour of Volans with its Alpha star – the “a” symbol on our chart. Alpha Volantis is located approximately 124 light years from Earth and it is a white class A (A2.5) subgiant star. While it is not anything particularly special, it is about twice the size of our Sun and shines about 30 times brighter. Somehow it got the Alpha designation, even though Beta (the “B” symbol) is physically brighter and 16 light years closer! Want a real trip? Then have a look at Delta – the “8” symbol. Even though it appears almost as bright as the rest of the stars, Delta is an F-type bright giant star that’s 660 light years from our solar system!

Now, get out your telescope for Epsilon Volantis – the backwards “3”. Epsilon is a triple star system! Located approximately 642 light years from Earth, the primary component, Epsilon Volantis A, is a spectroscopic binary star all of its own. It’s a blue-white B-type subgiant star with a companion that orbits so close we can only see it spectroscopically and know that it causes changes about every two weeks. But take a close look and you’ll discover a third, 8th magnitude star there, too. Epsilon Volantis B is 6.05 arcseconds away and an easy capture for a small telescope and large binoculars.

How about Gamma Volantis? It’s the “Y” symbol. This wide double star was just meant for binoculars! The two members are brighter, western Gamma-1 Volantis (magnitude 5.67) and dimmer, eastern Gamma-2 (magnitude 3.78). Set apart by 14.1 seconds of arc, you won’t have any trouble cutting these two stars apart and their color contrast make them a real winner in a telescope. Gamma-2 is a standard orange class K (K0) giant star and Gamma-1 is a a white class F (F2) dwarf star. While you might think this is an optical double star, it isn’t. The pair is physically bound to each other and both stars are about 142 light years away.

For those wishing a challenge, take on about the only deep sky study to be found in Volans – NGC 2442 (RA 7 : 36.4 Dec -69 : 32). At 11th magnitude and 6 arc minutes in size, this low surface brightness barred spiral galaxy is a nice study for a large telescope. Located about 50 million light years away from our Milky Way Galaxy, NGC 2442 was first was discovered by Sir John Herschel and contains a very unusual dark cloud of gas – one devoid of any stars. How did this come to be? Astronomers believe the cloud was torn loose from NGC 2442 by a companion during a galaxy interaction. Why not? After all, NGC is surrounded! If you have large aperture, you’ll see PGC 21457, PGC 21406, NGC 2434, PGC 21212, PGC 21323, PGC 21369 and PGC 21426 are nearby, too. Several of these satellite galaxies are physically related to NGC 2442. Be sure to look for two spiral arms extending from a pronounced central bar, giving the whole galaxy a hook-shaped appearance.

Sources:
Wikipedia
University of Wisconsin
Chart Courtesy of Your Sky.

Tammy Plotner

Tammy was a professional astronomy author, President Emeritus of Warren Rupp Observatory and retired Astronomical League Executive Secretary. She’s received a vast number of astronomy achievement and observing awards, including the Great Lakes Astronomy Achievement Award, RG Wright Service Award and the first woman astronomer to achieve Comet Hunter's Gold Status. (Tammy passed away in early 2015... she will be missed)

Recent Posts

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

4 hours ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

18 hours ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

24 hours ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

1 day ago

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 days ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

2 days ago