Categories: AstronomySatellites

XMM Newton Zeroes in on Zombie Star

[/caption]
Soft Gamma-ray Repeaters (SGRs) are strange and relatively rare objects, with only five known to exist (four in the Milky Way and one in the Large Magellanic Cloud.) Each is between 10 and 30 km across, yet contains about twice the mass of the Sun. SGRs are collapsed cores of large stars that have exploded, called neutron stars, and seemingly, they refuse to die: they will repeatedly flare up after remaining quiet for long periods. Now, ESA’s XMM-Newton spacecraft zeroed in on one of these stellar zombies, SGR 1627-41 revealing it to be extremely unique and unusual.

What sets SGRs apart from other neutron stars is that they possess magnetic fields that are up to 1000 times stronger. This has led astronomers to call them magnetars.

SGR 1627-41 was discovered in 1998 by NASA’s Compton Gamma Ray Observatory when it burst into life emitting around a hundred short flares during a six-week period. It then faded before X-ray telescopes could measure its rotation rate. Thus, SGR 1627-41 was the only magnetar with an unknown period.

But now, XMM Newton was able to determine the rotation rate for the first time: it rotates once every 2.6 seconds. “This makes it the second fastest rotating magnetar known,” says Sandro Mereghetti, INAF/Istituto di Astrofisica Spaziale e Fisica Cosmica, Milan, one of the team.

XMM Newton Spacecraft. Credit: ESA

Theorists are still puzzling over how these objects can have such strong magnetic fields. One idea is that they are born spinning very quickly, at 2-3 milliseconds. Ordinary neutron stars are born spinning at least ten times more slowly. The rapid rotation of a new-born magnetar, combined with convection patterns in its interior, gives it a highly efficient dynamo, which builds up such an enormous field.

With a rotation rate of 2.6 seconds, this magnetar must be old enough to have slowed down. Another clue to the magnetar’s age is that it is still surrounded by a supernova remnant. During the measurement of its rotation rate, XMM-Newton also detected X-rays coming from the debris of an exploded star, possibly the same one that created the magnetar. “These usually fade to invisibility after a few tens of thousand years. The fact that we still see this one means it is probably only a few thousand years old”, says Mereghetti.

If it flares again, the team plan to re-measure its rotation rate. Any difference will tell them how quickly the object is decelerating. There is also the chance that SGR 1627-41 will release a giant flare. Only three such events have been seen in the last 30 years, each from a different SGR, but not from SGR 1627-41.

These superflares can supply as much energy to Earth as solar flares, even though they are halfway across the Galaxy, whereas the Sun is at our celestial doorstep. “These are intriguing objects; we have much still to learn about them,” says Mereghetti.

Source: ESA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 hour ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

3 hours ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

4 hours ago

Astronomers Think They’ve Found Examples of the First Stars in the Universe

When the first stars in the Universe formed, the only material available was primordial hydrogen…

6 hours ago

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

23 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

24 hours ago