Rockets

Photonic Crystals Could Be Exactly What Breakthrough Starshot is Looking For

Light sail technology is a fascinating concept and a step change in rocket propulsion.  It may not be big and impressive like the Saturn V, the Space Shuttle or the new Starship rocket but when it comes to travelling among the stars, light sails could just be the answer. And what better material to build the sails from then something that just makes me want to say it over and over again….I talk about photonics crystals. It’s sounds right out of a Star Trek episode but a new paper examines their feasibility. 

The concept of light sails is really quite simple. Instead of a fabric sail attached to a ship that harnesses the force of the wind, light sails harness the force of light to propel spacecraft through the cosmos. They rely upon the pressure of photons emitted by a powerful light source like a laser to generate low levels of thrust.

The idea is that photons of light carry momentum and exert a force when they reflect off a surface. The deployment of large, super thin sails made of reflective material like Mylar – of the same variety used commonly in amateur astronomy to observe the Sun – the spacecraft can be pushed along, slowly accelerating but eventually to astonishing speeds. 

Whilst light sails may not get a spaceship off the ground and into orbit, once deployed in space, the long slow acceleration is a very efficient way of travelling through space. This is not just science fiction, the Starshot Breakthrough project has become a leader in the field to develop a spacecraft to send humans to Proxima Centauri 4.3 light years away) in a human lifetime. 

A paper recently published by a team led by Jin Chang explores the possibility of a new material for light sails known as nano manufactured photonics crystals. These crystals are  optical nanostructures (between microscopic and molecular scales) where the refractive index changes periodically. These occur in nature in the animal kingdom for example in the reflective nature of cat and dog eyes. 

Reflection of camera flash from the tapetum lucidum – Credit : Greg Hume

The team show how a silicon nitride photonics crystal with a thin silicon membrane can achieve the high levels of reflectivity in the 1300nm to 1500nm wavelengths required for light sails. The potential in the sails is significant with the manufacturing techniques able to scale up to several metres which may well set the scene for finally, if not slowly, sending humans across the galaxy. 

SOURCE : Broadband, High-Reflectivity Dielectric Mirrors at Wafer Scale: Combining Photonic Crystal and Metasurface Architectures for Advanced Lightsails

Mark Thompson

Recent Posts

Curiosity Finds Ancient Wave Ripples on Mars

NASA’s Curiosity Rover has been exploring Mars since 2012 and, more recently has found evidence…

5 hours ago

The Star-Forming Party Ended Early in Isolated Dwarf Galaxies

Gas is the stuff of star formation, and most galaxies have enough gas in their…

6 hours ago

A Tether Covered in Solar Panels Could Boost the ISS’s Orbit

The ISS's orbit is slowly decaying. While it might seem a permanent fixture in the…

9 hours ago

Habitable Worlds Could Have Formed Before the First Galaxies

What came first, galaxies or planets? The answer has always been galaxies, but new research…

1 day ago

Hubble Takes a 2.5 Gigapixel Image of Andromeda

The Andromeda galaxy is our closest galactic neighbour, barring dwarf galaxies that are gravitationally bound…

1 day ago

Black Holes are Spinning Faster Than Expected

There's a Universe full of black holes out there, spinning merrily away—some fast, others more…

1 day ago