James Webb Space Telescope

The Crab Reveals Its Secrets To JWST

The Crab Nebula – otherwise known as the first object on Charles Messier’s list of non-cometary objects or M1 for short – has never really failed to visually underwhelm me! I have spent countless hours hunting down this example of a supernova remnant and found myself wondering why I have bothered. Yet here I am, after decades of looking at it, and I still find it one of the most intriguing objects in the sky.

Never has this interest been piqued more than right now after another mirror-smashing beauty of an image from the James Webb Space Telescope, and it’s already found its way to my mobile phone wallpaper!

The NASA/ESA/CSA James Webb telescope was launched back in December 2021, and from its position 1.5 million km away, it orbits the Sun, giving us a brand new window out into the Universe. Using its Near-Infrared Camera (NIRCAM) and the Mid-Infrared Instrument (MIRI) JWST has been exploring the Crab Nebula, the remains of a star whose explosion was recorded back in 1054. The object, which is 6,500 light years away, can be seen in small amateur telescopes and is without doubt one of the most studied supernova remnants of all. 

Despite being the target of many, many observations, there are still plenty of unanswered questions about the nature of the star that exploded, the mechanics of the explosion itself, and the composition of the ejecta.  Using JWSTs infrared capabilities, the image of the Crab reveals red/orange filaments of dust around the central region. The filaments weave an intricate pattern over the whole nebula, but it’s the core that has received more attention. 

Compare and contrast the Hubble version on the left with the new, Webb version on the right. Credit: NASA, ESA, CSA, STScI, T. Temim (Princeton University)

It has been known that there is a pulsar at the core of the nebula, and it’s this pulsar that is the true remains of the progenitor star.  When it went ‘supernova,’ the core collapsed to form the ultra-dense rotating object that, if you happen to be in the right place in space (hey, that rhymes), then you will see a pulse of radiation as it rotates. The infrared images from JWST reveal synchrotron emissions, which are a direct result of the rapidly rotating pulsar.  As the pulsar rotates, the magnetic field accelerates particles in the nebula to astonishingly high speeds such that they emit synchrotron radiation. As a fabulously lucky quirk of nature, the radiation is particularly obvious in infrared, making it ideal for JWST. 

Not only has JWST detected synchrotron radiation, but it has also mapped out locations of dust particles and even… locations where dust particles are forming. It’s fabulous to think that an object that was discovered almost a thousand years ago is still surprising us. That’s one of the things I love about astronomy: you think you have seen it all, but there is always more to learn.  Over the coming years, teams of astronomers using both HST and JWST will continue to probe the depths of the Crab Nebula, and maybe one day, all of its secrets will finally be revealed. 

Source: ESA JWST News Release

Mark Thompson

Recent Posts

Astronomers Discover a New Meteor Shower. The Source is Comet 46P/Wirtanen

Like many of you, I love a good meteor shower. I have fond memories of…

7 hours ago

Surprise! Japan’s SLIM Moon Lander Wakes Up After a Freezing Night

Japan's space agency didn't expect its wrong-side-up SLIM moon lander to revive itself after powering…

10 hours ago

Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge

Does Saturn’s largest moon, Titan, possess the necessary ingredients for life to exist? This is…

12 hours ago

What Kinds of Astronomy Could Be Done With a Telescope on the Moon?

For decades, astronomers have said that one of the most optimal places to build large…

17 hours ago

The Kuiper Belt is Much Bigger Than We Thought

NASA’s New Horizons spacecraft is just over 8.8 billion km away, exploring the Kuiper Belt.…

17 hours ago

A Planetary Disk in the Orion Nebula is Destroying and Replenishing Oceans of Water Every Month

Planet-forming disks are places of chaotic activity. Not only do planetesimals slam together to form…

24 hours ago