NASA

NASA Seeks Industry Proposals for Next-Generation Lunar Rover

As Artemis II gets ready to launch in November 2024, NASA recently announced it is pursuing contract proposals from private companies for the development of a next-generation Lunar Terrain Vehicle (LTV) to be used for crewed missions starting with Artemis V, which is currently scheduled for 2029. NASA has set a due date for the proposals of July 10, 2023, at 1:30pm Central Time, with the announcement for rewarded contracts to occur in November 2023.

“We want to leverage industry’s knowledge and innovation, combined with NASA’s history of successfully operating rovers, to make the best possible surface rover for our astronaut crews and scientific researchers,” Lara Kearney, who is the manager of NASA’s Extravehicular Activity and Human Surface Mobility program at NASA’s Johnson Space Center, said in the statement.

NASA envisions the LTV as a hybrid rover capable of crewed and uncrewed operations, which will allow for continuous science exploration on the lunar surface. For crewed operations, the LTV will allow astronauts the ability to both explore the lunar surface and transport equipment that would otherwise be hindered by the limited moonwalk distances. For uncrewed operations, the LTV would have the ability to be remotely operated for both scientific and transportation needs, much like NASA’s Curiosity and Perseverance rovers currently exploring Mars.

The Artemis missions are slated to take place on the south pole of the Moon, meaning the LTV will endure extreme temperatures changes as it traverses areas of constant sunlight and constant darkness during any operations. Thus, the LTV will need to be equipped with more advanced systems than what are traditionally used on such rovers, including shielding from the extreme environments, semi-autonomous driving capabilities, and advanced power management and communication and navigation systems.

Artist rendition of NASA’s next-generation Lunar Terrain Vehicle traversing the lunar surface. (Credit: NASA)

The requirements for the proposals are very in-depth, as NASA is requesting that all companies provide details ranging from LTV development to lunar surface operations, along with seating requirements of two crew members, scientific payloads such as a robotic arm or other device, and how the LTV will survive the extreme temperature changes at the south pole.

Why the lunar south pole?

The lunar south pole was chosen due to its permanently shadowed regions (PSRs), which, as the name implies, are areas, specifically craters, on the Moon that receive absolutely zero sunlight, and scientists believe this has been the case for the last few billion years. Since the Moon has no atmosphere, liquid water can’t exist on its surface, but these permanently darkened craters have been found to contain traces of water ice that have accumulated over the eons, which can be used on Artemis missions without the need for constant resupply from Earth.

Map displaying the permanently shadowed regions (blue) on the Moon that encompass approximately three percent of the lunar south pole. (Credit: NASA Goddard/Lunar Reconnaissance Orbiter mission)

Building off Apollo

The LTV is slated to be a significantly advanced version of the lunar roving vehicle (LRV) used on Apollo 15, 16, and 17. While that vehicle also carried two astronauts and allowed for a greater amount of scientific exploration than moonwalks could accomplish, the LRV could only be used for crewed operations, as remote operations for a rover was still decades away. Also, the LRV only experienced permanent sunlight, as all Apollo missions were conducted during the lunar day to allow for better surface operations. Therefore, the LRV didn’t experience extreme temperature changes as the LTV will endure at the lunar south pole for Artemis. For the three missions, the LRV traversed distances of 27.76 km (17.25 mi), 26.55 km (16.50 mi), and 35.89 km (22.30 mi), respectively, and the LTV will undoubtedly be designed to exceed these numbers for the Artemis missions.

Image of Apollo 17 mission commander Eugene A. Cernan conducting a short checkout of the LRV during the mission. Much like the Artemis LTV, the Apollo LRV was also designed to seat two astronauts. (Credit: NASA)

The LTV will undoubtedly be sturdier, too, as Apollo 17 lost one of its LRV fender extensions during one outing, whose purpose was to prevent lunar dust from getting on the vehicle instruments. The damage was caused by Commander Gene Cernan unexpectedly catching his suit-strapped hammer on the fender and ripped it off. Without the fender, large amounts of lunar dust would be thrown up (which the astronauts called “rooster tails”), making it nearly impossible to use the LRV, as the lunar dust would gather heat from the Sun and potentially damage the instruments from the increased temperatures. In the end, the astronauts had to duct tape one of the laminated maps to create a makeshift fender to continue their rover operations.

The Apollo 17 lunar rover fender was repaired using duct tape and laminated maps, and the Artemis LTV will undoubtedly have to be sturdier. (Credit: NASA)

As stated, the LTV isn’t scheduled to be used until Artemis V in 2029, so the company selected to build the LTV has a few years before it’s to be used on the Moon. In the meantime, Artemis II is scheduled for a 10-day orbital mission around the Moon in November 2024, followed by Artemis III in 2025 and Artemis IV in 2028.

How will the LTV improve operations for the Artemis missions in the coming years and decades? Only time will tell, and this is why we science!

As always, keep doing science & keep looking up!

Laurence Tognetti

Laurence Tognetti is a six-year USAF Veteran who earned both a BSc and MSc from the School of Earth and Space Exploration at Arizona State University. Laurence is extremely passionate about outer space and science communication, and is the author of “Outer Solar System Moons: Your Personal 3D Journey”.

Recent Posts

New Shepard’s 25th Launch Carries Six to the Edge of Space and Back

Sending tourists to space is still relatively novel in the grand scheme of humanity's journey…

12 hours ago

That Recent Solar Storm Was Detected Almost Three Kilometers Under the Ocean

On May 10th, 2024, people across North America were treated to a rare celestial event:…

12 hours ago

More Evidence for the Gravitational Wave Background of the Universe

The gravitational wave background was first detected in 2016. It was announced following the release…

2 days ago

When Uranus and Neptune Migrated, Three Icy Objects Were Crashing Into Them Every Hour!

The giant outer planets haven’t always been in their current position. Uranus and Neptune for…

2 days ago

Astronomers Discover the Second-Lightest “Cotton Candy” Exoplanet to Date.

The hunt for extrasolar planets has revealed some truly interesting candidates, not the least of…

2 days ago

Did Earth’s Multicellular Life Depend on Plate Tectonics?

How did complex life emerge and evolve on the Earth and what does this mean…

3 days ago