Astronomy

Astronomers use Earthquakes to Understand Glitches on Neutron Stars

A team of astronomers have used a model of earthquakes to understand glitches in the timing of pulsars. Their results suggest that pulsars may have interiors that are far stranger than can be imagined.

Pulsars are perhaps the most accurate timekeepers in the entire universe. The pulsars themselves are really rapidly spinning neutron stars. Neutron stars are ultra-dense balls of atomic matter, usually no bigger than a few miles across with a mass a few times that of the Sun. 

When these neutron stars spin they blast out beams of radiation that draw circles around the sky. If the Earth happens to lie on one of those circles then we see a periodic flashing from those beams of radiation, creating a pulsar.

Pulsars will keep accurate rhythm for incredibly long periods of time. But occasionally they are known to glitch, when they suddenly shift from one rotation rate to another.

Astronomers do not fully understand what causes the glitches, but recently a team of researchers put together a model of how glitches operate. The model is based on earthquakes. Earthquakes have many causes, but one of them is when too much tension and pressure builds up between tectonic plates and the crust of the Earth buckles under the pressure. That results in an earthquake and a resettling of the material in the Earth.

When it comes to neutron stars, their complex interiors can also undergo enormous pressures, with components of the neutron star material pressing up against other parts. If the pressure becomes too much, the neutron star rearranges itself, triggering a starquake and a realignment of its own interior. With the new distribution of mass within the neutron star a new rotation rate emerges.

The researchers used this earthquake model to try to determine what is at the interior of neutron stars. The deep cores of neutron stars could be neutrons in a highly exotic state, or a more degenerate form of matter made almost entirely of strange quarks.

The researchers found that the model of the neutron star interior that included strange quarks was better able to produce glitches through a starquake mechanism. 

Astronomers will need to make further observations to test this idea, but it shows how the observational features of neutron stars can give us hints as to their mysterious interiors.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Scientists Found Evidence Of A Nearby Kilonova 3.5 Million Years Ago

Most of the times astronomers reported dramatic, cataclysmic events like neutron star mergers or the…

5 hours ago

What Could a Next Generation Event Horizon Telescope Do?

Telescopes have come a long way in a little over four hundred years! It was…

19 hours ago

Iran Sent a Capsule Capable of Holding Animals into Orbit.

Despite popular opinion, the first animals in space were not dogs or chimps, they were…

21 hours ago

If Our Part of the Universe is Less Dense, Would That Explain the Hubble Tension?

In the 1920s, Edwin Hubble and Georges Lemaitre made a startling discovery that forever changed…

2 days ago

Did the Last Great Galactic Merger Create the Milky Way's Bar?

About 8-11 billion years ago, a dwarf galaxy merged with the Milky Way, adding 50…

2 days ago

A Star Near the Center of the Milky Way is a Visitor from Beyond

There's an alien red giant star orbiting in the center of our galaxy. It's called…

2 days ago