Black Holes

A Black Hole’s X-Rays are Coming From a Region 2,000 km Away From the Singularity Itself

In 1961 astronomers discovered a powerful x-ray source coming from the constellation Cygnus. Not knowing what it was, they named the source Cygnus X-1. It’s one of the strongest x-ray sources in the sky, and we now know it is powered by a stellar-mass black hole. Since it is only about 7,000 light-years away, it also gives astronomers an excellent view of how stellar-mass black holes behave. Even after six decades of study, it continues to teach us a few things, as a recent study in Science shows.

Cygnus X-1 is actually a binary system. The black hole itself is a 21 solar-mass stellar remnant, and it orbits a 41 solar-mass companion star. It’s a powerful x-ray source because material from the star is captured into an accretion disk of the black hole, which superheats the material and generates jets of plasma that flow away from the black hole. This is a common situation for black holes, but astronomers still don’t understand all the details of how this type of structure evolves.

For this study, the team used data from the Imaging X-Ray Polarimetry Explorer (IXPE), which can capture not just x-rays but also their polarization. When they combined this data with other observations of Cygnus X-1, they found the x-rays are emitted not from the regions along the jets, but from a 2,000 km region perpendicular to the jets. In other words, the accretion disk itself is the primary x-ray source. This supports the model where the innermost region of the accretion disk is what powers a black hole’s jets.

This X-ray image of Cygnus X-1 was taken by a balloon-borne telescope, the High Energy Replicated Optics (HERO) project. NASA image.

The team also found that the orientation of the accretion disk is tilted significantly relative to the orbital plane of the binary system. It would be unusual for members of a stellar binary system to have such differing rotational axes, so it is likely that the shift occurred during the cataclysmic explosion that formed the black hole.

Knowing that the x-ray source is relatively close to the black hole, astronomers can further study their dynamics to better understand how black holes affect the warping of space and time, which could lead to more stringent tests of general relativity.

Reference: Krawczynski, Henric, et al. “Polarized x-rays constrain the disk-jet geometry in the black hole x-ray binary Cygnus X-1Science (2022): 5399.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Update your Desktop Wallpaper with 25 New Images from Chandra

It’s not always possible to observe the night sky from the surface of the Earth.…

36 mins ago

SpaceX Resumes Falcon 9 Rocket Launches After FAA Go-Ahead

SpaceX is flying again after the Federal Aviation Administration ruled that the company can resume…

2 hours ago

Is This How You Get Hot Jupiters?

When we think of Jupiter-type planets, we usually picture massive cloud-covered worlds orbiting far from…

1 day ago

Now Uranus’ Moon Ariel Might Have an Ocean too

Venus is known for being really quite inhospitable with high surface temperatures and Mars is…

1 day ago

Why is JWST Having So Much Trouble with the TRAPPIST-1 System?

When the James Webb Space Telescope was launched it came with a fanfare expecting amazing…

1 day ago

Planetary Habitability Depends on its Star’s Magnetic Field

The extrasolar planet census recently passed a major milestone, with 5500 confirmed candidates in 4,243…

1 day ago