Categories: Astronomy

Astronomy Jargon 101: Trans-Neptunian Objects

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll be far from home in today’s topic: trans-Neptunian objects!

The trans-Neptunian objects (often abbreviated at TNOs) are any worlds, small or otherwise, that orbit the Sun farther than Neptune’s average distance, which is around 30 AU. There are almost 3,000 known TNOs, and astronomers suspect there are countless more.

By far the most famous of all the TNOs is Pluto. Even though Pluto spends 20 years of every orbit closer to the Sun than Neptune, it spends the vast majority of its time farther away. At that distance, the light of the Sun is so dim that Pluto exists in permanent twilight, and temperatures are cold enough for the world to support giant mountains made of pure water ice.

For decades since its discovery by Clyde Tombaugh in 1930, astronomers believed that Pluto was the only object beyond the orbit of Neptune, but the 1992 discovery of Albion changed that. We now understand that the solar system past Neptune is a rich and diverse – if very cold – place.

Even though Pluto is the largest of the TNOs by radius, it is not the most massive. That honor goes to Eris. That world has a highly eccentric orbit. At its closest approach to the Sun, it’s about 38 times farther way than the Earth. At its most distant, it’s nearly 100 times farther away. Some other TNOs have orbits three times bigger.

Astronomers know of almost all TNOs as mere points of light, since they are so small and so far away from the Sun. Based on spectroscopy from reflected sunlight, most TNOs appear to be mixtures of rock and ice. Many, like Pluto, have a dull red color, a product of ultraviolet light striking organic molecules on their surfaces.

Two categories divide the trans-Neptunian objects. The Kuiper belt is a narrow band stretching from 40-50 AU. This Kuiper belt is similar to the asteroid belt, but on a much larger scale. Beyond that lies the scattered disk. The TNOs that live there tend to  have highly eccentric orbits, which astronomers believe is caused by constant tiny gravitational nudges from the giant planets.

Paul M. Sutter

Astrophysicist, Author, Host |

Recent Posts

A New Way to Measure the Rotation of Black Holes

Sometimes, astronomers get lucky and catch an event they can watch to see how the…

3 hours ago

Could Martian atmospheric samples teach us more about the Red Planet than surface samples?

NASA is actively working to return surface samples from Mars in the next few years,…

14 hours ago

Black Holes are Firing Beams of Particles, Changing Targets Over Time

Black holes seem to provide endless fascination to astronomers. This is at least partly due…

1 day ago

Another Giant Antarctic Iceberg Breaks Free

On May 20th, 2024, an iceberg measuring 380 square kilometers (~147 mi2) broke off the…

2 days ago

Fish are Adapting to Weightlessness on the Chinese Space Station

Four zebrafish are alive and well after nearly a month in space aboard China's Tiangong…

2 days ago

Marvel at the Variety of Planets Found by TESS Already

The hunt for new exoplanets continues. On May 23rd, an international collaboration of scientists published…

2 days ago