Categories: Astronomy

Astronomy Jargon 101: Black Holes

In this series we are exploring the weird and wonderful world of astronomy jargon! You’ll never want to stop learning about today’s topic: black holes!

Ah, black holes. Basically the worst things in the universe. Nobody likes them. Nobody wants to be them. Nobody even wants to get close to them. If it weren’t for black holes, the cosmos would be a much brighter place.

The German physicist Karl Schwarzschild first discovered black holes in 1916, by total accident. He had discovered a solution to Einstein’s theory of general relativity that applied to the generic case of a single spherically-symmetric object. Buried in that math was the peculiar property that if the object was compressed below a certain threshold, it would continue to collapse to an infinitely tiny point.

A black hole.

Physicists long debated whether black holes were real, but after a hundred years we know for sure that they exist. We see X-rays pouring out of binary systems, where only one of the pair is visible. The other is a black hole, and the X-rays are caused by matter heating up as it falls in. We see stars in the center of the galaxy orbiting a massive, invisible object…a black hole. We see gravitational waves produced when black holes collide. And we even have a picture of one – well, the shadow carved out by a black hole surrounded by a ring of gas – thanks to the Event Horizon Telescope.

The “surface” of a black hole isn’t really a surface. It’s called the event horizon, and it’s really just a mathematical boundary. If you cross the event horizon, then you would need to travel faster than the speed of light to escape. Since that’s not allowed, the black holes stay black. Whatever goes in never comes out.

Astronomers have identified two different kinds of black holes: stellar and supermassive. The stellar kind are much more common. The Milky Way probably hosts a few million of them, and each one weighs only a few solar masses. The supermassive ones, however, are truly gigantic, with the biggest reaching hundreds of billions of solar masses. They are much more rare, and tend to sit in the centers of galaxies.

Black holes form from the deaths of massive stars. When giant stars run out of fuel, their cores collapse. With no other force available to oppose that collapse, the cores shrink and shrink and shrink, becoming a black hole.

In general, I would not recommend attempting to visit a black hole. If you cross the event horizon, not only will you never escape, but you will certainly meet your end. At the center of every black hole sits a singularity, a point of infinite density. When you enter a black hole, you have a finite amount of time before you reach that singularity…and total oblivion.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Europa Clipper Begins Odyssey to Assess Jovian Moon’s Habitability

NASA's Europa Clipper spacecraft today began its six-year cruise to the Jupiter system, with the…

4 hours ago

It’s Like Looking into a Mirror, 13 Billion Years Ago

The early Universe continues to offer surprises and the latest observations of infant galaxies are…

5 hours ago

How Gravitational Waves Could Let Us See the First Moments After the Big Bang

Cosmology has had several ground-breaking discoveries over the last 100+ years since Einstein developed his…

7 hours ago

Can an Asteroid's Movements Reveal a New Force in the Universe?

When NASA's OSIRIS-REx mission arrived at asteroid Bennu, its primary mission was to grab a…

8 hours ago

New Research Could Help Resolve the “Three-Body Problem”

Perhaps you've heard of the popular Netflix show and the science fiction novel on which…

24 hours ago

Webb Observations Shed New Light on Cosmic Reionization

The "Epoch of Reionization" was a critical period for cosmic evolution and has always fascinated…

1 day ago