Categories: Astronomy

Did Titan Give Saturn its Tilt?

Giant planets like Saturn don’t just tilt over all by themselves: something has to knock them over, or tug on them gravitationally, to push them off axis. Scientists expect that when new planets are born, they form with almost no tilt at all, lining up like spinning tops, with their equators level to the orbital plane in which they circle around their sun.

But no planet in our solar system is perfectly level. Jupiter is the closest, boasting an obliquity (tilt) of just 3.12 degrees. Earth’s obliquity is much more substantive at 23.45 degrees, causing us to experience an annual cycle of seasons as our homeworld wobbles on its axis. Saturn’s tilt is more extreme yet, with an obliquity of 26.73 degrees (though it’s nowhere near as extreme as Uranus, which is practically sideways, spinning at a 97.86-degree angle to its orbital plane).

We can learn a lot from these obliquities.

We know, for example, from geological evidence gathered during the Apollo missions, that Earth’s tilt was likely the result of massive impacts with other rocky objects early in the planet’s history, the largest of which broke off and formed our Moon. Just as archeologists examine clay pots and fragments of bone to piece together ancient cultures, physicists can examine planetary tilts to understand the Solar System’s past. Modern-day wobbles are evidence of dramatic events long ago. Or, as a new paper suggests, perhaps not-so-long-ago.

A team of researchers from the Paris Observatory and the University of Pisa, led by Melaine Saillenfest, suggest that the origin of Saturn’s tilt may be much more recent than previously believed, and that its largest moon, Titan, may be to blame.

Astronomers traditionally believed that Saturn’s tilt had nothing to do with its moons, but rather more to do with interactions between it and its fellow gas giants. One mainstream theory of solar system formation, known as the Nice model, suggests that about four billion years ago, a great migration occurred in which the giant planets moved slowly outwards, under the gravitational influence of each other and smaller planetesimals.

Graphic by James O’Donoghue (with imagery from NASA), demonstrating the axial tilt of the planets.

According to this model, the culprit responsible for Saturn’s tilt was Neptune, which tugged the ringed giant over as it swept out towards the Kuiper belt (actually, evidence from the Cassini mission showed that Saturn’s rings are fairly new: they probably weren’t around during the great migration. But I digress). If the Nice model is to be believed, planetary obliquities were set in stone a long time ago, and have remained relatively stable since.

The new theory proposed by Saillenfest and the team disagrees. They suggest instead that a migration of Titan in the recent past (about 1 billion years ago) is equally capable of explaining the tilt Saturn has today. Titan’s orbit may have remained regular for billions of years, but their model shows that an orbital resonance with Saturn could have occurred recently, simultaneously changing the moon’s orbit and forcing a nearly upright Saturn to fall sideways.

Titan passes in front of Saturn, as seen by the Cassini Spacecraft on June 8, 2015. Credit: NASA/JPL-Caltech/Space Science Institute.

It’s hard to be sure which model is correct without more evidence (maybe the upcoming Dragonfly mission to Titan can turn up something). But the possibility of such a recent migration opens up possibilities for future changes to the Solar System. As the researchers put it, the obliquities of giant planets “are not settled once for all, but continuously evolve as a result of the migration of their satellites.” The Solar System as we know it today may not be as stable or unchanging as it seems, and may be in for future disturbances to come (though I wouldn’t lose sleep over it – not for a billion years or so).

Saillenfest and coauthor’s Giacomo Lari and Gwenaël Boué published their paper in Nature Astronomy earlier this year.

Resources:

Melaine Saillenfest, Giacomo Lari and Gwenaël Boué “The large obliquity of Saturn explained by the fast migration of Titan.” Nature Astronomy.

Manuscript available at: https://arxiv.org/abs/2110.04104.

Scott Alan Johnston

Scott Alan Johnston is a writer and historian of science and technology. He has a PhD from McMaster University in Hamilton, Ontario. You can follow him on Twitter @ScottyJ_PhD

Recent Posts

NASA is Building a Nuclear Reactor to Power Lunar and Martian Exploration!

NASA and the U.S. Dept. of Energy have come together to solicit design proposals for…

10 hours ago

InSight Peers Deep Below the Surface on Mars

The InSight lander has been on Mars, gathering data for a thousand days now, working…

1 day ago

Astronauts Took A Fly-around of the International Space Station. Here are Their Stunning Pictures

When astronauts left the International Space Station in early November to return home on the…

2 days ago

NASA Simulation Shows What Happens When Stars Get Too Close to Black Holes

What happens to a star when it strays too close to a monster black hole?…

2 days ago

The Parker Solar Probe is getting pelted by hypervelocity dust. Could they damage spacecraft?

There’s a pretty significant disadvantage to going really fast - if you get hit with…

2 days ago

The Decadal Survey is out! What new Missions and Telescopes are in the Works?

It’s that time again.  Once every ten years, the American astronomy community joins forces through…

2 days ago