Categories: AstronomyBlack Holes

Astronomers Might use Pulsars to First Detect Merging Supermassive Black Holes

Astronomers have been using gravitational waves to detect merging black holes for years now, but may have to rely on pulsars – rapidly spinning neutron stars – to observe the mergers of supermassive black holes.

When black holes merge, they release enormous amounts of energy in the form of ripples in the fabric of spacetime. These ripples are constantly washing over the Earth, and it’s only through the use of extremely – and I mean extremely – sensitive detectors that we can spot them.

Right now, our gravitational wave detectors are only sensitive to brief, intense pulses, signalling the mergers of relatively small black holes and neutron stars. When giant black holes merge, however, the process takes so long – and produces gravitational waves of such low frequency – that we can’t spot it in the data.

??A recent study led by Dr Boris Goncharov and Prof Ryan Shannon – both researchers from the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) in Australia – are trying a different tactic: instead of observing gravitational waves directly, they’re hoping that pulsars do the hard work for us.

Pulsars are a special kind of neutron star that rapidly rotates, sending a splash of radiation across the Earth at precisely timed intervals. Their work uses the Parkes Pulsar Timing Array to monitor as many pulsars as possible. As the gravitational waves from a supermassive black hole merger wiggle through the galaxy, they will cause variations in the timing of the pulses.

Recently, the team announced that they did indeed observe variations in the timings of pulsar flashes, and that the variations are consistent with expectations from gravitational waves. However, they haven’t observed enough pulsars yet to determine if it’s truly a global signal, or just an artifact of their observations.

According to Dr. Goncharov: “To find out if the observed ‘common’ drift has a gravitational wave origin, or if the gravitational-wave signal is deeper in the noise, we must continue working with new data from a growing number of pulsar timing arrays across the world.” 

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

2 days ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

2 days ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

3 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

3 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

3 days ago