Categories: AstronomyPhysics

Don’t Be Surprised if EmDrive Experiments Never Work

Every few years the “EmDrive”, a proposed method of generating rocket thrust without any exhaust, hits the news. Each time, everyone asks: could this be it? Could this be the technological leap to revolutionize spaceflight?

Don’t hold your breath.

Here’s the basic idea behind the EmDrive. You take a chamber with a funky shape (usually narrower on one end than the other). You let a bunch of microwave radiation bounce around inside it. Accordingly to some – ahemcontroversial experiments, the device begins to move, with no emission from the drive at all. This runs counter to the usual rocket setup, which requires the expulsion of a propellent to push a spacecraft around.

Proponents of the EmDrive claim that it represents a revolution in physics and technology, a great leap for mankind that frees us from the shackles of…well, needing a propellent. Sure, the claimed thrust is incredibly tiny – not even enough to push a piece of paper – but anything other than 0 would be a big deal.

Big deal indeed. Assuming that the EmDrive works as advertised, it completely violates known physics. And not just in a small way – it breaks one of the most important, fundamental, cornerstone aspects of physics: conservation of momentum.

Things can’t just start moving on their own. According to literally everything we know about physics, the EmDrive can’t just go all by itself. It has to push something out in the opposite direction, or react to something else, in order to generate thrust.

Momentum conservation isn’t just a cool idea. It underscores almost the entirety of modern physics. Everything from quantum field theory to general relativity are really just expressions of conservation of momentum in specialized contexts. Conservation of momentum has been experimentally confirmed countless times in everything from high-energy particle colliders to the expansion of the universe itself.

Yeah, sure, momentum conservation could be broken in a new, exotic case that we haven’t encountered before. But it’s unlikely to show up as a tiny thrust in an EmDrive, where the observed thrust is so small that there many other, more plausible, explanations: microwave leakage, reactions with the Earth’s magnetic field, miscalibration, etc.

We may someday find that we need to update our understanding of momentum conservation. But not today.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

Lunar Night Permanently Ends the Odysseus Mission

On February 15th, Intuitive Machines (IM) launched its first Nova-C class spacecraft from Kennedy Space…

2 hours ago

Webb Joins the Hunt for Protoplanets

We can't understand what we can't clearly see. That fact plagues scientists who study how…

4 hours ago

This Supernova Lit Up the Sky in 1181. Here’s What it Looks Like Now

Historical astronomical records from China and Japan recorded a supernova explosion in the year 1181.…

7 hours ago

Hubble Sees a Star About to Ignite

This is an image of the FS Tau multi-star system taken by the Hubble Space…

7 hours ago

This Black Hole is a Total Underachiever

Anyone can be an underachiever, even if you're an astronomical singularity weighing over four billion…

8 hours ago

Someone Just Found SOHO's 5,000th Comet

The Solar and Heliospheric Observatory (SOHO) was designed to examine the Sun, but as a…

9 hours ago