Categories: neutrinos

Almost all High-Energy Neutrinos Come From Quasars

Buried under the ice at the South Pole is a neutrino observatory called IceCube. Every now and then IceCube will detect a particularly high-energy neutrino from space. Some of them are so high energy we aren’t entirely sure what causes them. But a new article points to quasars as the culprit.

Quasars are distant supermassive black holes. During the early universe, many of these black holes were extremely active. The hot material surrounding these black holes can emit everything from x-rays to powerful bursts of radio light. In this new work, the team analyzed 7 years of data from IceCube and found an interesting correlation between quasars and high-energy neutrinos.

Map comparing quasar locations to probable neutrino sources. Credit: Plavin, et al

The data showed that most of the high-energy neutrinos originated from the centers of quasars. Their detection often occurs around the time that a quasar undergoes a strong radio burst. Since neutrinos travel at nearly the speed of light, photons and neutrinos reach Earth and nearly the same time. This suggests that the quasar radio bursts are producing neutrinos.

To explain this, the team proposed a rough model. Strong radio quasar bursts occur when hot, ionized gas near the black hole flows through strong magnetic fields. The charged particles are accelerated, causing them to emit radio light. But a rapid flow of dense plasma also causes nuclei and electrons to collide with each other. The high-energy collision of protons can create pions, which emit gamma rays and neutrinos when they decay.

How quasars might create high-energy neutrinos. Credit: Plavin, et al

This is only a rough model. To study their idea further, the team will gather more radio observations of quasars, as well as data from a neutrino telescope known as the Baikal Gigaton Volume Detector. Together this will allow them to study the central regions of quasars in detail.

Reference: Plavin, A. V., et al. “Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars.” The Astrophysical Journal 908.2 (2021): 157.

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history…

59 mins ago

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

2 days ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

2 days ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

2 days ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

2 days ago