Categories: Pulsars

Astronomers can use Pulsars to Measure Tiny Changes of Acceleration Within the Milky Way, Scanning Internally for Dark Matter and Dark Energy

As our Sun moves along its orbit in the Milky Way, it is gravitationally tugged by nearby stars, nebulae, and other masses. Our galaxy is not a uniform distribution of mass, and our Sun experiences small accelerations in addition to its overall orbital motion. Measuring those small tugs has been nearly impossible, but a new study shows how it can be done.

Animation of the Crab Nebula pulsar. Credit: S. Klepser, MAGIC Collaboration

The team focused on binary pulsars. These are pulsars that have an orbiting companion. Pulsars emit bursts of radio light at regular intervals. The pulses are so regular they can serve as a kind of celestial clock. As a binary pulsar orbits its companion, the timing of the pulsars varies slightly as the signal is Doppler shifted by the motion of the pulsar relative to us. By measuring the timing shift, you can calculate the acceleration of the pulsars.

In this study, the team calculated the relative motion of 14 pulsars, which gave them a measure of their accelerations relative to the solar system. It’s an impressive feat because these accelerations are extremely tiny. From these accelerations, the team measured the mass density within the plane of the Milky Way.

Illustration of the Sun’s motion in the galaxy. Credit: ESA – C. Carreau

Stars don’t orbit the galaxy in simple circles. Instead, their motion bobs up and down through the galactic plane as the mass in the plane pulls them gravitationally. The pulsars observed by the team also do this. By measuring their accelerations the team could determine how strongly the galaxy pulls on them, and thus the mass within the galaxy.

This work is important because it could help us understand the distribution of dark matter within our galaxy. We know that most of our galaxy’s dark matter is distributed in a halo surrounding the galaxy, but if we can determine how much dark matter is in the galactic plane it will help us understand how dark matter clumps together within a galaxy. Knowing this distribution could also help us understand how dark energy expands the universe. One of the things this initial study found was that mass within the galactic plane is not evenly distributed, which could be a dark matter signal.

Reference: Sukanya Chakrabarti, et al. “A measurement of the Galactic plane mass density from binary pulsar accelerations.” arXiv preprint arXiv:2010.04018 (2020)

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

18 mins ago

China is Going Back to the Moon Again With Chang'e-6

On Friday, May 3rd, the sixth mission in the Chinese Lunar Exploration Program (Chang'e-6) launched…

3 hours ago

What Can Early Earth Teach Us About the Search for Life?

Earth is the only life-supporting planet we know of, so it's tempting to use it…

3 hours ago

China Creates a High-Resolution Atlas of the Moon

Multiple space agencies are looking to send crewed missions to the Moon's southern polar region…

23 hours ago

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

2 days ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

2 days ago