Categories: AstronomySolar System

The Solar System has a second plane where objects orbit the Sun

Almost all the objects orbiting the sun live in a particular plane, called the ecliptic plane. But a recent analysis of long-period comets reveals a second home, a so-called “empty ecliptic”. And it may be populated with comets dragged there by none other than the gravity of the Milky Way galaxy.

When solar systems like ours first start forming, they compress from a loose-and-irregular cloud of gas and dust into a rapidly spinning, thin, flat disk. All the planets, the asteroids, and the comets form in this disk. Once that disk disappears (either through its material accreting onto planets or it getting blasted by outbursts from the young sun), all the objects still maintain that original orbital preference, something called the ecliptic plane.

You can see this effect today, as you watch the sun, the moon, and all the planets travel along roughly the same track on the sky.

The comets are another story. While they initially formed along with everyone else on the ecliptic plane, their gravitational interactions with the outer planets forced them into other, essentially random orbits around the sun. That’s why comets enter our skies from all sorts of directions.

But the distribution of comets in our solar system may not be too random, according to new research appearing the Astronomical Journal. That analysis found that long-period comets tend to also prefer a second plane of the solar system.

This plane, known as the “empty ecliptic” because it started out barren and was later filled with comets, sits at a very precise angle relative to the original ecliptic plane. The ecliptic itself sits at 60 degrees relative to the plane of our Milky Way galaxy (in other words, our solar system is tilted by 60 degrees relative to the galaxy), while the empty ecliptic sits at 60 degrees in the opposite direction.

This lead the researchers to conclude that the environment of our solar system – namely, the gravitational differences surrounding us – play a role in shifting and shaping the orbits of long-period comets.

These results aren’t nearly cut-and-dry, however. Comets do have all sorts of orbits, with just a general vague preference to either hang out in the either the normal or empty ecliptic, but even then the most-preferred location isn’t exactly on either one. Understanding why this is the case can help astronomers understand how the galaxy itself shaped the evolution of our solar system.

Paul M. Sutter

Astrophysicist, Author, Host | pmsutter.com

Recent Posts

China Creates a High-Resolution Atlas of the Moon

Multiple space agencies are looking to send crewed missions to the Moon's southern polar region…

15 hours ago

Dinkinesh's Moonlet is Only 2-3 Million Years Old

Last November, NASA's Lucy mission conducted a flyby of the asteroid Dinkinish, one of the…

2 days ago

The Universe Could Be Filled With Ultralight Black Holes That Can't Die

Steven Hawking famously calculated that black holes should evaporate, converting into particles and energy over…

2 days ago

Starlink on Mars? NASA Is Paying SpaceX to Look Into the Idea

NASA has given the go-ahead for SpaceX to work out a plan to adapt its…

2 days ago

Did You Hear Webb Found Life on an Exoplanet? Not so Fast…

The JWST is astronomers' best tool for probing exoplanet atmospheres. Its capable instruments can dissect…

3 days ago

Vera Rubin’s Primary Mirror Gets its First Reflective Coating

First light for the Vera Rubin Observatory (VRO) is quickly approaching and the telescope is…

3 days ago